Skip to main content
Log in

Hollow micro- and nano-particles by gas foaming

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

This paper presents the results of a first successful attempt to produce hollow micro- and nano-particles of a large variety of materials, dimensions, shapes and hollow attributes by using an environmentally friendly and cheap technology, common in polymer processing and known as gas foaming. The central role played by ad hoc polymeric hollow micro- and nano-particles in a variety of emerging applications such as drug delivery, medical imaging, advanced materials, as well as in fundamental studies in nanotechnology highlights the wide relevance of the proposed method. Our key contribution to overcome the physical lower bound in the micro- and nano-scale gas foaming was to embed, prior to foaming, bulk micro- and nano-particles in a removable and deformable barrier film, whose role is to prevent the loss of the blowing agent, which is otherwise too fast to allow bubble formation. Furthermore, the barrier film allows for non-isotropic deformation of the particle and/or of the hollow, affording non-spherical hollow particles. In comparison with available methods to produce hollow micro- and nano-particles, our method is versatile since it offers independent control over the dimensions, material and shape of the particles, and the number, shape and open/closed features of the hollows. We have gasfoamed polystyrene and poly-(lactic-co-glycolic) acid particles 200 μm to 200 nm in size, spherical, ellipsoidal and discoidal in shape, obtaining open or closed, single or multiple, variable in size hollows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fu, G.-D.; Li, G. L.; Neoh, K. G.; Kang, E. T. Hollow polymeric nanostructures-synthesis, morphology and function. Prog. Polym. Sci. 2011, 36, 127–167.

    Article  Google Scholar 

  2. Im, S.H.; Jeong, U.; Xia, Y. N. Polymer hollow particles with controllable holes in their surfaces. Nat. Mater. 2005, 4, 671–675.

    Article  Google Scholar 

  3. Blanazs, A.; Armes, S. P.; Ryan, A. J. Self-assembled block copolymer aggregates: From micelles to vesicles and their biological applications. Macromol. Rapid Commun. 2009, 30, 267–277.

    Article  Google Scholar 

  4. Cavalieri, F.; Hamassi, A. E.; Chiessi, E.; Paradossi, G. Stable polymeric microballoons as multifunctional device for biomedical uses: Synthesis and characterization. Langmuir 2005, 21, 8758–8764.

    Article  Google Scholar 

  5. Levine, D. P.; Ghoroghchian, P. P.; Freudenberg, J.; Zhang, G.; Therien, M. J.; Greene, M. I.; Hammer, D. A.; Murali, R. Polymersomes: A new multi-functional tool for cancer diagnosis and therapy. Methods 2008, 46, 25–32.

    Article  Google Scholar 

  6. Jung, Y. K.; Kim, T. W.; Kim, J.; Kim, J.-M.; Park, H. G. Universal colorimetric detection of nucleic acids based on polydiacetylene (PDA) liposomes. Adv. Funct. Mater. 2008, 18, 701–708.

    Article  Google Scholar 

  7. Kolusheva, S.; Zadmard, R.; Schrader, T.; Jelinek, R.. Color fingerprinting of proteins by calixarenes embedded in lipid/polydiacetylene vesicles. J. Am. Chem. Soc. 2006, 128, 13592–13598.

    Article  Google Scholar 

  8. Narayan, P.; Marchant, D.; Wheatley, M. A. Optimization of spray drying by factorial design for production of hollow microspheres for ultrasound imaging. J. Biomed. Mater. Res. 2001, 56, 333–341.

    Article  Google Scholar 

  9. Schutt, E. G.; Klein, D. H.; Mattrey, R. M.; Riess, J. G. Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: The key role of perfluorochemicals. Angew. Chem. Int. Ed. 2003, 42, 3218–3235.

    Article  Google Scholar 

  10. Cheng, D. M.; Zhou, X. D.; Xia, H. B.; Xhan, H. S. O. Novel method for preparation of polymeric hollow nanospheres containing silver cores with different sizes. Chem. Mater. 2005, 17, 3578–3581.

    Article  Google Scholar 

  11. Crespy, D.; Stark, M.; Hoffann-Richter, C.; Ziener, U.; Landfester, K. Polymeric nanoreactors for hydrophilic reagents synthesized by interfacial polycondensation on miniemulsion droplets. Macromolecules 2007, 40, 3122–3135.

    Article  Google Scholar 

  12. Broz, P.; Driamov, S.; Ziegler, J.; Ben-Haim, N.; Marsch, S.; Meier, W.; Hunziker, P. Toward intelligent nanosize bioreactors: A pH-switchable, channel-equipped, functional polymer nanocontainer. Nano Lett. 2006, 6, 2349–2353.

    Article  Google Scholar 

  13. Sanlés-Sobrido, M.; Pérez-Lorenzo, M.; Rodríguez-González, B.; Salgueiriño, V.; Correa-Duarte, M. A. Highly active nanoreactors: Nanomaterial encapsulation based on confined catalysis. Angew. Chem. Int. Ed. 2012, 51, 3877–3882.

    Article  Google Scholar 

  14. Cochran, J. K. Ceramic hollow spheres and their applications. Curr. Opin. Solid State Mater. Sci. 1998, 3, 474–479.

    Article  Google Scholar 

  15. Fu, G.-D.; Shang, Z.; Hong, L.; Kang, E.-T.; Neoh, K.-G. Nanoporous ultralowdielectric constant fluoropolymer films from agglomerated and crosslinked hollow nanospheres of poly(pentafluorostyrene)-block-poly(divinylbenzene). Adv. Mater. 2005, 17, 2622–2626.

    Article  Google Scholar 

  16. Narayan, P.; Wheatley, M. A. Preparation and characterization of hollow microcapsules for use as ultrasound contrast agents. Polym. Eng. Sci. 1999, 39, 2242–2255.

    Article  Google Scholar 

  17. Wan, M. X.; Li, J.; Li, S. Z. Microtubules of polyaniline as new microwave absorbent materials. Polym. Adv. Technol. 2001, 12, 651–657.

    Article  Google Scholar 

  18. Coccoli, V.; Luciani, A.; Orsi, S.; Guarino, V.; Causa, F.; Netti, P. A. Engineering of poly(ɛ-caprolactone) microcarriers to modulate protein encapsulation capability and release kinetic. J. Mater. Sci.: Mater. Med. 2008, 19, 1703–1711.

    Google Scholar 

  19. Chern, C. S. Emulsion polymerization mechanisms and kinetics. Prog. Polym. Sci. 2006, 31, 443–486.

    Article  Google Scholar 

  20. Čejková, J.; Hanuš, J.; Štepánek, F. Investigation of internal microstructure and thermo-responsive properties of composite PNIPAM/silica microcapsules. J. Colloid. Interface Sci. 2010, 346, 352–360.

    Article  Google Scholar 

  21. Vivaldo-Lima, E.; Wood, P. E.; Penlidis, A. An updated review on suspension polymerization. Ind. Eng. Chem. Res. 1997, 36, 939–965.

    Article  Google Scholar 

  22. Schneider, G.; Decher, G. From functional core/shell nanoparticles prepared via layer-by-layer deposition to empty nanospheres. Nano Lett. 2004, 4, 1833–1839.

    Article  Google Scholar 

  23. Kim, M.; Yoon, S. B.; Sohn, K.; Kim, J. K.; Shin, C.-H.; Hyeon, T.; Yu, J.-S. Synthesis and characterization of spherical carbon and polymer capsules with hollow macroporous core and mesoporous shell structures. Micropor. Mesopor. Mater. 2003, 63, 1–9.

    Article  Google Scholar 

  24. Wang, W.; Yang, J.-X.; He, B.; Gu, Z.-W. A novel method to prepare crosslinked polyethylenemine hollow nanospheres. Chin. J. Polym. Sci. 2007, 25, 431–435.

    Article  Google Scholar 

  25. Pavlyuchenko, V. N.; Sorochinskaya, O. V.; Ivanchev, S. S.; Kublin, V. V.; Kreichman, G. S.; Budtov, V. P.; Skrifvars, M.; Halme, E.; Koskinen, J. Hollow-particle latexes: Preparation and properties. J. Polym. Sci. A-Polym. Chem. 2001, 39, 1435–1449.

    Article  Google Scholar 

  26. Moughton, A. O.; Stubennauch, K.; O’Reilly, R. K. Hollow nanostructures form self-assembled supramolecular metallo-triblock copolymers. Soft Matter 2009, 5, 2361–2370.

    Article  Google Scholar 

  27. Ginty, P. J.; Whitaker, M. J.; Shakesheff, K. M.; Howdle, S. M. Drug delivery goes supercritical. Nano Today 2005, 8, 42–48.

    Google Scholar 

  28. Zhang, Q. C.; Liu, J.; Wang, X. J.; Li, M. X.; Yang, J. Controlling internal nanostructures of porous microspheres prepared via electrospraying. Colloid. Polym. Sci. 2010, 288, 1385–1391.

    Article  Google Scholar 

  29. Wang, M. X. Some issues related to polyaniline micro-/nanostructures. Macromol. Rapid Comm. 2009, 30, 963–975.

    Article  Google Scholar 

  30. Choi, S.-W.; Zhang, Y.; Xia, Y. N. Fabrication of microbeads with a controllable hollow interior and porous wall using a capillary fluidic device. Adv. Funct. Mater. 2009, 19, 2943–2949.

    Article  Google Scholar 

  31. Wang, A.-J.; Lu, Y.-P.; Sun, R.-X. Recent progress on the fabrication of hollow microspheres. Mater. Sci. Eng. A 2007, 460–461, 1–6.

    Google Scholar 

  32. Decuzzi, P.; Pasqualini, R.; Arap, W.; Ferrari M. Intravascular delivery of particulate systems: Does geometry really matter? Pharmaceut. Res. 2009, 26, 235–243.

    Article  Google Scholar 

  33. Xing, S. X.; Feng, Y. H.; Tay, Y. Y.; Chen, T.; Xu, J.; Pan, M.; He, J. T.; Hng, H. H.; Yan, Q. Y.; Chen, H. Y. Reducing the symmetry of bimetallic Au@Ag nanoparticles by exploiting eccentric polymer shells. J. Am. Chem. Soc., 2010, 132, 9537–9539.

    Article  Google Scholar 

  34. Sato, Y.; Takikawa, T.; Takishima, S.; Masuoka, H. Solubilities and diffusion coefficients of carbon dioxide in poly(vinyl acetate) and polystyrene. J. Supercrit. Fluids 2001, 19, 187–198.

    Article  Google Scholar 

  35. Wong, A.; Park, C. B. A visualization system for observing plastic foaming processes under shear stress. Polym. Test. 2012, 31, 417–424.

    Article  Google Scholar 

  36. Patel, K.; Manley, R. S. J. Carbon dioxide sorption and transport in miscible cellulose/poly(vinyl alcohol) blends. Macromolecules 1995, 28, 5793–5798.

    Article  Google Scholar 

  37. Feng, J. J.; Bertelo, C. A. Prediction of bubble growth and size distribution in polymer foaming based on a new heterogeneous nucleation model. J. Rheol. 2004, 48, 439–462.

    Article  Google Scholar 

  38. Arefmanesh, A.; Advani, S. G. Nonisothermal bubble growth in polymeric foams. Poly. Eng. Sci. 1995, 35, 252–260.

    Article  Google Scholar 

  39. Everitt, S. L.; Harlen, O. G.; Wilson, H. J.; Read, D. J. Bubble dynamics in viscoelastic fluids with application to reacting and non-reacting polymer foams. J. Non-Newt. Fluid. Mech. 2003, 114, 83–107.

    Article  Google Scholar 

  40. Chithrani, B. B.; Ghazani, A. A.; Chan, W. C. W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006, 6, 662–668.

    Article  Google Scholar 

  41. Champion, J. A.; Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. USA 2006, 104, 4930–4934.

    Article  Google Scholar 

  42. Mitragotri, S.; Lamamm, J. Physical approaches to biomaterial design. Nat. Mater. 2009, 8, 15–23.

    Article  Google Scholar 

  43. Champion, J. A.; Katare, Y.; Mitragotri, S. Making polymeric micro- and nanoparticles of complex shapes. Proc. Natl. Acad. Sci. USA 2007, 104, 11901–11904.

    Article  Google Scholar 

  44. Liu, G. Y.; Yang, X. L.; Wang, Y. M. Synthesis of ellipsoidal hematite/silica/polymer hybrid materials and the corresponding hollow polymer ellipsoids. Langmuir 2008, 24, 5485–5491.

    Article  Google Scholar 

  45. Di Maio, E.; Mensitieri, G.; Iannace, S.; Nicolais, L.; Li, W.; Flumerfelt, R. W. Structure optimization of polycaprolactone foams by using mixtures of CO2 and N2 as blowing agents. Polym. Eng. Sci. 2005, 45, 432–441.

    Article  Google Scholar 

  46. Miqueu, C.; Mendiboure, B.; Graciaa, C.; Lachaise, J. Modelling of the surface tension of binary and ternary mixtures with the gradient theory of fluid interfaces. Fluid Phase Equilibr. 2004, 218, 189–203.

    Article  Google Scholar 

  47. Anderson, D. M.; McFadden, G. B.; Wheeler, A. A. Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid. Mech. 1998, 30, 139–165.

    Article  Google Scholar 

  48. Blundell, D. J.; Keller, A.; Kovacs, A. A new self-nucleation phenomenon and its application to the growing of polymer crystals from solution. J. Polym. Sci. B—Polym. Lett. 1966, 4, 481–486.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Di Maio.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orsi, S., Di Maio, E., Iannace, S. et al. Hollow micro- and nano-particles by gas foaming. Nano Res. 7, 1018–1026 (2014). https://doi.org/10.1007/s12274-014-0465-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0465-4

Keywords

Navigation