Skip to main content
Log in

Silicene nanoribbons as carbon monoxide nanosensors with molecular resolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Applications based on silicene as grown on substrates are of high interest toward actual utilization of this unique material. Here we explore, from first principles, the nature of carbon monoxide adsorption on semiconducting silicene nanoribbons and the resulting quantum conduction modulation with and without silver contacts for sensing applications. We find that quantum conduction is detectably modified by weak chemisorption of a single CO molecule on a pristine silicene nanoribbon. This modification can be attributed to the charge transfer from CO to the silicene nanoribbon and the deformation induced by the CO chemisorption. Moderate binding energies provide an optimal mix of high detectability and recoverability. With Ag contacts attached to a ∼1 nm silicene nanoribbon, the interface states mask the conductance modulations caused by CO adsorption, emphasizing length effects for sensor applications. The effects of atmospheric gases—nitrogen, oxygen, carbon dioxide, and water—as well as CO adsorption density and edge-dangling bond defects, on sensor functionality are also investigated. Our results reveal pristine silicene nanoribbons as a promising new sensing material with single molecule resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Y.; Yeow, J. T. W. A review of carbon nanotubes-based gas sensors. J. Sensors 2009, 493904.

    Google Scholar 

  2. Leenaerts, O.; Partoens, B.; Peeters, F. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Phys. Rev. B 2008, 77, 125416.

    Article  Google Scholar 

  3. Paulla, K. K.; Farajian, A. A. Concentration effects of carbon oxides on sensing by graphene nanoribbons: Ab initio modeling. J. Phys. Chem. C 2013, 117, 12815–12825.

    Article  Google Scholar 

  4. Ratinac, K. R.; Yang, W.; Ringer, S. P.; Braet, F. Toward ubiquitous environmental gas sensors-capitalizing on the promise of graphene. Environ. Sci. Technol. 2010, 44, 1167–1176.

    Article  Google Scholar 

  5. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.

    Article  Google Scholar 

  6. Chung, M. G.; Kim, D. H.; Lee, H. M.; Kim, T.; Choi, J. H.; Seo, D. K.; Yoo, J. B.; Hong, S. H.; Kang, T. J.; Kim, Y. H. Highly sensitive NO2 gas sensor based on ozone treated graphene. Sensor. Actuat. B—Chem. 2012, 166–167, 172–176.

    Article  Google Scholar 

  7. Ao, Z. M.; Yang, J.; Li, S.; Jiang, Q. Enhancement of CO detection in Al doped graphene. Chem. Phys. Lett. 2008, 461, 276–279.

    Article  Google Scholar 

  8. Osborn, T. H.; Farajian, A. A. Stability of lithiated silicene from first principles. J. Phys. Chem. C 2012, 116, 22916–22920.

    Article  Google Scholar 

  9. Osborn, T. H.; Farajian, A. A.; Pupysheva, O. V.; Aga, R. S.; Lew Yan Voon, L. C. Ab initio simulations of silicene hydrogenation. Chem. Phys. Lett. 2011, 511, 101–105.

    Article  Google Scholar 

  10. Gao, N.; Zheng, W. T.; Jiang, Q. Density functional theory calculations for two-dimensional silicene with halogen functionalization. Phys. Chem. Chem. Phys. 2012, 14, 257–261.

    Article  Google Scholar 

  11. Zheng, F.; Zhang, C.; Yan, S.; Li, F. Novel electronic and magnetic properties in N or B doped silicene nanoribbons. J. Mater. Chem. C 2013, 1, 2735–2743.

    Article  Google Scholar 

  12. Léandri, C.; Oughaddou, H.; Aufray, B.; Gay, J. M.; Le Lay, G.; Ranguis, A.; Garreau, Y. Growth of Si nanostructures on Ag(001). Surf. Sci. 2007, 601, 262–267.

    Article  Google Scholar 

  13. Enriquez, H.; Vizzini, S.; Kara, A.; Lalmi, B.; Oughaddou, H. Silicene structures on silver surfaces. J. Phys. Condens. Mat. 2012, 24, 314211.

    Article  Google Scholar 

  14. Le Lay, G.; Aufray, B.; Léandri, C.; Oughaddou, H.; Biberian, J. P.; De Padova, P.; Davila, M. E.; Ealet, B.; Kara, A. Physics and chemistry of silicene nano-ribbons. Appl. Surf. Sci. 2009, 256, 524–529.

    Article  Google Scholar 

  15. Aufray, B.; Kara, A.; Vizzini, S.; Oughaddou, H.; Léandri, C.; Benedicte, E.; Le Lay, G. Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene. Appl. Phys. Lett. 2010, 96, 183102.

    Article  Google Scholar 

  16. Lian, C.; Ni, J. The structural and electronic properties of silicon nanoribbons on Ag(110): A first principles study. Phys. B Condens. Mat. 2012, 407, 4695–4699.

    Article  Google Scholar 

  17. Perdew, J.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  18. Ordejón, P.; Artacho, E.; Soler, J. Self-consistent order-N density-functional calculations for very large systems. Phys. Rev. B. Condens. Mat. 1996, 53, R10441–R10444.

    Article  Google Scholar 

  19. Soler, M.; Artacho, E.; Gale, J. D.; Garcia, A.; Junquera, J.; Ordejon, P.; Sanchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Mat. 2002, 14, 2745–2779.

    Article  Google Scholar 

  20. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100.

    Article  Google Scholar 

  21. Lee, C.; Hill, C.; Carolina, N. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.

    Article  Google Scholar 

  22. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A., et al. Gaussian 09. (2009).

    Google Scholar 

  23. Farajian, A. A.; Belosludov, R. V.; Mizuseki, H.; Kawazoe, Y. A general-purpose approach for calculating transport in contact-molecule-contact systems: TARABORD implementation and application to a polythiophene-based nanodevice. Thin Solid Films 2006, 499, 269–274.

    Article  Google Scholar 

  24. Sadrzadeh, A.; Farajian, A. A.; Yakobson, B. I. Electron transport of nanotube-based gas sensors: An ab initio study. Appl. Phys. Lett. 2008, 92, 022103.

    Article  Google Scholar 

  25. Dávila, M. E.; Marele, A.; De Padova, P.; Montero, I.; Hennies, F.; Pietzsch, A.; Shariati, M. N.; Gómez-Rodríguez, J. M.; Le Lay, G. Comparative structural and electronic studies of hydrogen interaction with isolated versus ordered silicon nanoribbons grown on Ag(110). Nanotechnology 2012, 23, 385703.

    Article  Google Scholar 

  26. Şahin, H.; Cahangirov, S.; Topsakal, M.; Bekaroglu, E.; Akturk, E.; Senger, R. T.; Ciraci, S. Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. Phys. Rev. B 2009, 80, 155453.

    Article  Google Scholar 

  27. Lew Yan Voon, L. C.; Sandberg, E.; Aga, R. S.; Farajian, A. A. Hydrogen compounds of group-IV nanosheets. Appl. Phys. Lett. 2010, 97, 163114.

    Article  Google Scholar 

  28. Bacalzo, F. T.; Musaev, D. G.; Lin, M. C. Theoretical studies of CO adsorption on Si(100)-2 × 1 surface. J. Phys. Chem. B 1998, 5647, 2221–2225.

    Article  Google Scholar 

  29. Lian, C.; Yang, Z.; Ni, J. Strain modulated electronic properties of silicon nanoribbons with armchair edges. Chem. Phys. Lett. 2013, 561-562, 77–81.

    Article  Google Scholar 

  30. Luo, L.; Yang, X.; Liang, F.; Jie, J.; Wu, C.; Wang, L.; Yu, Y.; Zhu, Z. Surface dangling bond-mediated molecules doping of germanium nanowires. J. Phys. Chem. C 2011, 115, 24293–24299.

    Article  Google Scholar 

  31. Park, J. S.; Ryu, B.; Moon, C. Y.; Chang, K. J. Defects responsible for the hole gas in Ge/Si core-shell nanowires. Nano Lett. 2010, 10, 116–121.

    Article  Google Scholar 

  32. Luo, L. B.; Yang, X. B.; Liang, F. X.; Xu, H.; Zhao, Y.; Xie, X.; Zhang, W. F.; Lee, S. T. Surface defects-induced p-type conduction of silicon nanowires. J. Phys. Chem. C 2011, 115, 18453–18458.

    Article  Google Scholar 

  33. Hong, K. H.; Kim, J.; Lee, J. H.; Shin, J.; Chung, U. I. Asymmetric doping in silicon nanostructures: The impact of surface dangling bonds. Nano Lett. 2010, 10, 1671–1676.

    Article  Google Scholar 

  34. De Padova, P.; Quaresima, C.; Olivieri, B.; Perfetti, P.; Le Lay, G. Strong resistance of silicene nanoribbons towards oxidation. J. Phys. D. Appl. Phys. 2011, 44, 312001.

    Article  Google Scholar 

  35. Konečný, R.; Doren, D. J. Adsorption of water on Si(100)-(2 × 1): A study with density functional theory. J. Chem. Phys. 1997, 106, 2426–2435.

    Article  Google Scholar 

  36. Qin, C.; Sremaniak, L. S.; Whitten, J. L. CO adsorption on Ag(100) and Ag/MgO(100). J. Phys. Chem. B 2006, 110, 11272–11276.

    Article  Google Scholar 

  37. He, G. Adsorption of Si on Ag(001) from ab initio study. Surf. Sci. 2009, 603, 2021–2029.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir A. Farajian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osborn, T.H., Farajian, A.A. Silicene nanoribbons as carbon monoxide nanosensors with molecular resolution. Nano Res. 7, 945–952 (2014). https://doi.org/10.1007/s12274-014-0454-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0454-7

Keywords

Navigation