Skip to main content
Log in

Multifunctional organically modified graphene with super-hydrophobicity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In order to bring graphene materials much closer to real world applications, it is imperative to have simple, efficient and eco-friendly ways to produce processable graphene derivatives. In this study, a hydrophilic low-temperature thermally functionalized graphene and its super-hydrophobic organically modified graphene derivative were fabricated. A unique structural topology was found and some of the oxygen functionalities were retained on the thermally functionalized graphene surfaces, which facilitated the subsequent highly effective organic modification reaction and led to the super-hydrophobic organically modified graphene with multifunctional applications in liquid marbles and polymer nanocomposites. The organic modification reaction also restored the graphenic conjugated structure of the thermally functionalized graphene, particularly for organic modifiers having longer alkyl chains, as confirmed by various characterization techniques such as electrical conductivity measurements, ultraviolet/visible spectroscopy and selected area electron diffraction. The free-standing soft liquid marble was fabricated by wrapping a water droplet with the super-hydrophobic organically modified graphene, and showed potential for use as a microreactor. As for the polymer nanocomposites, a strong interfacial adhesion is believed to exist between an organic polymer matrix and the modified graphene because of the organophilic coating formed on the graphene base, which resulted in large improvements in the thermal and mechanical properties of the polymer nanocomposites with the modified graphene, even at very low loading levels. A new avenue has therefore been opened up for large-scale production of processable graphene derivatives with various practicable applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

    Article  Google Scholar 

  2. Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.

    Article  Google Scholar 

  3. Loh, K. P.; Bao, Q. L.; Ang, P. K.; Yang, J. X. The chemistry of graphene. J. Mater. Chem. 2010, 20, 2277–2289.

    Article  Google Scholar 

  4. Staudenmaier, L. Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges. 1898, 31, 1481–1487.

    Article  Google Scholar 

  5. Brodie, B. C. Sur le poids atomique du graphite. Ann. Chim. Phys. 1860, 59, 466–472.

    Google Scholar 

  6. Hummers Jr, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

    Article  Google Scholar 

  7. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.

    Article  Google Scholar 

  8. Ding, Y. H.; Zhang, P.; Zhuo, Q.; Ren, H. M.; Yang, Z. M.; Jiang, Y. A green approach to the synthesis of reduced graphene oxide nanosheets under UV irradiation. Nanotechnology 2011, 22, 215601.

    Article  Google Scholar 

  9. Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud’homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 2006, 110, 8535–8539.

    Article  Google Scholar 

  10. Deng, S. Y.; Lei, J. P.; Cheng, L. X.; Zhang, Y. Y.; Ju, H. X. Amplified electrochemiluminescence of quantum dots by electrochemically reduced graphene oxide for nanobiosensing of acetylcholine. Biosens. Bioelectron. 2011, 26, 4552–4558.

    Article  Google Scholar 

  11. Yang, X. W.; Zhu, J. W.; Qiu, L.; Li, D. Bioinspired effective prevention of restacking in multilayered graphene films: Towards the next generation of high-performance supercapacitors. Adv. Mater. 2011, 23, 2833–2838.

    Article  Google Scholar 

  12. Xu, Y. X.; Bai, H.; Lu, G. W.; Li, C.; Shi, G. Q. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008, 130, 5856–5857.

    Article  Google Scholar 

  13. Si, Y. C.; Samulski, E. T. Synthesis of water soluble graphene. Nano Lett. 2008, 8, 1679–1682.

    Article  Google Scholar 

  14. Xu, Y. X.; Sheng, K. X.; Li, C.; Shi G. Q. Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide. J. Mater. Chem. 2011, 21, 7376–7380.

    Article  Google Scholar 

  15. Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.

    Article  Google Scholar 

  16. Zhu, Y. W.; Cai, W. W.; Piner, R. D.; Velamakanni, A.; Ruoff, R. S. Transparent self-assembled films of reduced graphene oxide platelets. Appl. Phys. Lett. 2009, 95, 103104.

    Article  Google Scholar 

  17. Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud’Homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41.

    Article  Google Scholar 

  18. McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud’homme, R. K., et. al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.

    Article  Google Scholar 

  19. Jing, X. J.; Qiu, Z. B. Effect of low thermally reduced graphene loadings on the crystallization kinetics and morphology of biodegradable poly (3-hydroxybutyrate). Ind. Eng. Chem. Res. 2012, 51, 13686–13691.

    Article  Google Scholar 

  20. Tung, N. T.; Van Khai, T.; Jeon, M.; Lee, Y. J.; Chung, H.; Bang, J. H.; Sohn, D. Preparation and characterization of nanocomposite based on polyaniline and graphene nanosheets. Macromol. Res. 2011, 19, 203–208.

    Article  Google Scholar 

  21. Yan, D.; Zhang, H. B.; Jia, Y.; Hu, J.; Qi, X. Y.; Zhang, Z.; Yu, Z. Z. Improved electrical conductivity of polyamide 12/graphene nanocomposites with maleated polyethylene-octene rubber prepared by melt compounding. ACS Appl. Mater. Interfaces 2012, 4, 4740–4745.

    Article  Google Scholar 

  22. Roy-Mayhew, J. D.; Bozym, D. J.; Punckt, C.; Aksay, I. A. Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano 2010, 4, 6203–6211.

    Article  Google Scholar 

  23. Wang, G. X.; Shen, X. P.; Wang, B.; Yao, J.; Park, J. Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon 2009, 47, 1359–1364.

    Article  Google Scholar 

  24. Park, S. J.; An, J.; Jung, I.; Piner, R. D.; An, S. J.; Li, X. S.; Velamakanni, A.; Ruoff, R. S. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 2009, 9, 1593–1597.

    Article  Google Scholar 

  25. Hu, H.; Wang, X. B.; Wang, J. C.; Liu, F. M.; Zhang, M.; Xu, C. H. Microwave-assisted covalent modification of graphene nanosheets with chitosan and its electrorheological characteristics. Appl. Surf. Sci. 2011, 257, 2637–2642.

    Article  Google Scholar 

  26. Cao, Y. W.; Feng, J. C.; Wu, P. Y. Alkyl-functionalized graphene nanosheets with improved lipophilicity. Carbon 2010, 48, 1683–1685.

    Article  Google Scholar 

  27. Lin, Z. Y.; Liu, Y.; Wong, C. P. Facile fabrication of superhydrophobic octadecylamine-functionalized graphite oxide film. Langmuir 2010, 26, 16110–16114.

    Article  Google Scholar 

  28. Zhang, S. P.; Song, H. O. Supramolecular graphene oxide-alkylamine hybrid materials: Variation of dispersibility and improvement of thermal stability. New J. Chem. 2012, 36, 1733–1738.

    Article  Google Scholar 

  29. Shanmugharaj, A. M.; Yoon, J. H.; Yang, W. J.; Ryu, S. H. Synthesis, characterization and surface wettability properties of amine functionalized graphene oxide films with varying amine chain lengths. J. Colloid Interf. Sci. 2013, 401, 148–154.

    Article  Google Scholar 

  30. Li, W. J.; Tang, X. Z.; Zhang, H. B.; Jiang, Z. G.; Yu, Z. Z.; Du, X. S.; Mai, Y. W. Simultaneous surface functionalization and reduction of graphene oxide with octadecylamine for electrically conductive polystyrene composites. Carbon 2011, 49, 4724–4730.

    Article  Google Scholar 

  31. Nethravathi, C.; Rajamathi, M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 2008, 46, 1994–1998.

    Article  Google Scholar 

  32. Matsuo, Y.; Higashika, S.; Kimura, K.; Miyamoto, Y.; Fukutsuka, T.; Sugie, Y. Synthesis of polyaniline-intercalated layered materials via exchange reaction. J. Mater. Chem. 2002, 12, 1592–1596.

    Article  Google Scholar 

  33. Aussillous, P.; Quéré, D. Liquid marbles. Nature 2001, 411, 924–927.

    Article  Google Scholar 

  34. Aussillous, P.; Quéré, D. Properties of liquid marbles. Proc. R. Soc. A 2006, 462, 973–999.

    Article  Google Scholar 

  35. Xue, Y. H.; Liu, Y.; Lu, F.; Qu, J.; Chen, H.; Dai, L. M. Functionalization of graphene oxide with polyhedral oligomeric silsesquioxane (POSS) for multifunctional applications. J. Phys. Chem. Lett. 2012, 3, 1607–1612.

    Article  Google Scholar 

  36. Jeon, I. Y.; Shin, Y. R.; Sohn, G. J.; Choi, H. J.; Bae, S. Y.; Mahmood, J.; Jung, S. M.; Seo, J. M.; Kim, M. J.; Chang, D. W., et al. Edge-carboxylated graphene nanosheets via ball milling. Proc. Natl. Acad. Sci. U.S.A 2012, 109, 5588–5593.

    Article  Google Scholar 

  37. Chen, C.; Long, M.; Xia, M.; Zhang, C. H.; Cai, W. M. Reduction of graphene oxide by an in-situ photoelectrochemical method in a dye-sensitized solar cell assembly. Nanoscale Res. Lett. 2012, 7, 1–5.

    Article  Google Scholar 

  38. Villar-Rodil, S.; Paredes, J. I.; Martínez-Alonso, A.; Tascón, J. M. D. Preparation of graphene dispersions and graphene-polymer composites in organic media. J. Mater. Chem. 2009, 19, 3591–3593.

    Article  Google Scholar 

  39. Hu, H. W.; Chen, G. H.; Fang, M.; Zhao, W. F. Modification of graphite oxide nanoparticles prepared via electrochemically oxidizing method. Synth. Met. 2009, 159, 1505–1507.

    Article  Google Scholar 

  40. Hu, H. W.; Xin, J. H.; Hu, H. Highly efficient graphene-based ternary composite catalyst with polydopamine layer and copper nanoparticles. ChemPlusChem 2013, 78, 1483–1490.

    Article  Google Scholar 

  41. Rani, J. R.; Lim, J.; Oh, J.; Kim, D.; Lee, D.; Kim, J. W.; Shin, H. S.; Kim, J. H.; Jun, S. C. Substrate and buffer layer effect on the structural and optical properties of graphene oxide thin films. RSC Adv. 2013, 3, 5926–5936.

    Article  Google Scholar 

  42. Mai, Y. J.; Wang, X. L.; Xiang, J. Y.; Qiao, Y. Q.; Zhang, D.; Gu, C. D.; Tu, J. P. CuO/graphene composite as anode materials for lithium-ion batteries. Electrochim. Acta 2011, 56, 2306–2311.

    Article  Google Scholar 

  43. Qi, Y.; Zhang, H.; Du, N.; Yang, D. R. Highly loaded CoO/graphene nanocomposites as lithium-ion anodes with superior reversible capacity. J. Mater. Chem. A 2013, 1, 2337–2342.

    Article  Google Scholar 

  44. Zhang, J. L.; Yang, H. J.; Shen, G. X.; Cheng, P.; Zhang, J. Y.; Guo, S. W. Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 2010, 46, 1112–1114.

    Article  Google Scholar 

  45. Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai. H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.

    Article  Google Scholar 

  46. Liu, N.; Pan, Z. H.; Fu, L.; Zhang, C. H.; Dai, B. Y.; Liu, Z. F. The origin of wrinkles on transferred graphene. Nano Res. 2011, 4, 996–1004.

    Article  Google Scholar 

  47. Zhang, H. J.; Xu, P. P.; Du, G. D.; Chen, Z. W.; Oh, K.; Pan, D. Y.; Jiao, Z. A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange. Nano Res. 2011, 4, 274–283.

    Article  Google Scholar 

  48. Shen, L. F.; Yuan, C. Z.; Luo, H. J.; Zhang, X. G.; Yang, S. D.; Lu, X. J. In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries. Nanoscale 2011, 3, 572–574.

    Article  Google Scholar 

  49. Mattson, E. C.; Cui, S. M.; Schofield, M. A.; Lu, G. H.; Pu, H.; Weinert, M. T.; Chen, J. H.; Hirschmugl, C. J.; Gajdardziska-Josifovska, M. Real-time observations of structural ordering in graphene oxide during thermal reduction in vacuum. Microsc. Microanal. 2011, 17, 1500–1501.

    Article  Google Scholar 

  50. Mattson, E. C.; Cui, S.; Mao, S.; Lu, G. H.; Chen, J.; Hirschmugl, C. J.; Gajdardziska-Josifovska, M. Structure of graphene oxide-tin oxide hybrid nanomaterials for gas sensors. Microsc. Microanal. 2010, 16, 1708–1709.

    Article  Google Scholar 

  51. Kim, H.; Kim, S. W.; Park, Y. U.; Gwon, H.; Seo, D. H.; Kim, Y.; Kang, K. SnO2/graphene composite with high lithium storage capability for lithium rechargeable batteries. Nano Res. 2010, 3, 813–821.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John H. Xin or Hong Hu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, H., Allan, C.C.K., Li, J. et al. Multifunctional organically modified graphene with super-hydrophobicity. Nano Res. 7, 418–433 (2014). https://doi.org/10.1007/s12274-014-0408-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0408-0

Keywords

Navigation