Skip to main content
Log in

Doping and alloying in atomically precise gold nanoparticles

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The recent success in the synthesis and total structure determination of atomically precise gold nanoparticles has provided exciting opportunities for fundamental studies as well as the development of new applications. These unique nanoparticles are of molecular purity and possess well defined formulas (i.e., specific numbers of metal atoms and ligands), resembling organic compounds. Crystallization of such molecularly pure nanoparticles into macroscopic single crystals allows for the determination of total structures of nanoparticles (i.e., the arrangement of metal core atoms and surface ligands) by X-ray crystallography. In this perspective article, we summarize recent efforts in doping and alloying gold nanoparticles with other metals, including Pd, Pt, Ag and Cu. With atomically precise gold nanoparticles, a specific number of foreign atoms (e.g., Pd, Pt) can be incorporated into the gold core, whereas a range of Ag and Cu substitutions is observed but, interestingly, the total number of metal atoms in the homogold nanoparticle is preserved. The heteroatom substitution of gold nanoparticles allows one to probe the optical, structural, and electronic properties truly at the single-atom level, and thus provides a wealth of information for understanding the intriguing properties of this new class of nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qian, H.; Zhu, M.; Wu, Z.; Jin, R. Quantum sized gold nanoclusters with atomic precision. Acc. Chem. Res. 2012, 45, 1470–1479.

    Article  Google Scholar 

  2. Jin, R.; Qian, H.; Wu, Z.; Zhu, Y.; Zhu, M.; Mohanty, A.; Garg, N. Size focusing: A methodology for synthesizing atomically precise gold nanoclusters. J. Phys. Chem. Lett. 2010, 1, 2903–2910.

    Article  Google Scholar 

  3. Maity, P.; Xie, S.; Yamauchiab, M.; Tsukuda, T. Stabilized gold clusters: From isolation toward controlled synthesis. Nanoscale 2012, 4, 4027–4037 and references therein.

    Article  Google Scholar 

  4. Jin, R. Quantum-sized thiolate protected gold nanoclusters. Nanoscale 2010, 2, 343–362 and references therein.

    Article  Google Scholar 

  5. Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-protected gold clusters revisited: Bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261–5270.

    Article  Google Scholar 

  6. Tracy, J. B.; Kalyuzhny, G.; Crowe, M. C.; Balasubramanian, R.; Choi, J.-P.; Murray, R. W. Poly(ethylene glycol) ligands for high-resolution nanoparticle mass spectrometry. J. Am. Chem. Soc. 2007, 129, 6706–6707.

    Article  Google Scholar 

  7. Zhu, M.; Lanni, E.; Garg, N.; Bier, M. E.; Jin, R. Kinetically controlled, high-yield synthesis of Au25 clusters. J. Am. Chem. Soc. 2008, 130, 1138–1139.

    Article  Google Scholar 

  8. Nimmala, P. R.; Dass, A. Au36(SPh)23 nanomolecules. J. Am. Chem. Soc. 2011, 133, 9175–9177.

    Article  Google Scholar 

  9. Zeng, C.; Qian, H.; Li, T.; Li, G.; Rosi, N. L.; Yoon, B.; Barnett, R. N.; Whetten, R. L.; Landman, U.; Jin, R. Total structure and electronic properties of the gold nanocrystal Au36(SR) 24. Angew. Chem. Int. Ed. 2012, 51, 13114–13118.

    Article  Google Scholar 

  10. Qian, H.; Zhu, Y.; Jin, R. Atomically precise gold nanocrystal molecules with surface plasmon resonance. Proc. Natl. Acad. Sci. USA 2012, 109, 696–700.

    Article  Google Scholar 

  11. Rosi, N. L.; Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 2005, 105, 1547–1562.

    Article  Google Scholar 

  12. Garg, N.; Mohanty, A.; Lazarus, N.; Schultz, L.; Rozzi, T. R.; Santhanam, S.; Weiss, L.; Snyder, J. L.; Fedder, G. K.; Jin, R. Robust gold nanoparticles stabilized by trithiol for application in chemiresistive sensors. Nanotechnology 2010, 21, 405501.

    Article  Google Scholar 

  13. Liu, Y.; Tsunoyama, H.; Akita, T.; Tsukuda, T. Efficient and selective epoxidation of styrene with TBHP catalyzed by Au25 clusters on hydroxyapatite. Chem. Commun. 2010, 46, 550–552.

    Article  Google Scholar 

  14. Li, G.; Jin, R. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res. 2013, 46, 1749–1758.

    Article  Google Scholar 

  15. Jin, R.; Cao, Y. W.; Hao, E.; Metraux, G. S.; Schatz, G. C.; Mirkin, C. A. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 2003, 425, 487–490.

    Article  Google Scholar 

  16. Schaaff, T. G.; Knight, G.; Shafigullin, M. N.; Borkman, R. F.; Whetten, R. L. Isolation and selected properties of a 10.4 kDa gold:glutathione cluster compound. J. Phys. Chem. B 1998, 102, 10643–10646.

    Article  Google Scholar 

  17. Wyrwas, R. B.; Alvarez, M. M.; Khoury, J. T.; Price, R. C.; Schaaff, T. G.; Whetten, R. L. The colours of nanometric gold: Optical response functions of selected gold-cluster thiolates. Eur. Phys. J. D 2007, 43, 91–95.

    Article  Google Scholar 

  18. Nobusada, K.; Iwasa, T. Oligomeric gold clusters with vertex-sharing bi- and triicosahedral structures. J. Phys. Chem. C 2007, 111, 14279–14282.

    Article  Google Scholar 

  19. Pei, Y.; Zeng, X. C. Investigating the structural evolution of thiolate protected gold clusters from first-principles. Nanoscale 2012, 4, 4054–4072 and references therein.

    Article  Google Scholar 

  20. Jiang, D.; Dai, S. From superatomic Au25(SR)18 to superatomic M@Au24(SR)18 shell clusters. Inorg. Chem. 2009, 48, 2720–2722.

    Article  Google Scholar 

  21. Kacprzak, K. A.; Lehtovaara, L.; Akola, J.; Lopez-Acevedoa, O.; Hakkinen, H. A density functional investigation of thiolate-protected bimetal PdAu24(SR)18 z clusters: Doping the superatom complex. Phys. Chem. Chem. Phys. 2009, 11, 7123–7129.

    Article  Google Scholar 

  22. Guidez, E. B.; Mäkinen, V.; Häkkinen, H.; Aikens, C. M. Effects of silver doping on the geometric and electronic structure and optical absorption spectra of the Au25−n Agn(SH) 18 (n = 1, 2, 4, 6, 8, 10, 12) bimetallic nanoclusters. J. Phys. Chem. C 2012, 116, 20617–20624.

    Article  Google Scholar 

  23. Sánchez-Castillo, A.; Noguez, C.; Garzón, I. L. On the origin of the optical activity displayed by chiral-ligand-protected metallic nanoclusters. J. Am. Chem. Soc. 2010, 132, 1504–1505.

    Article  Google Scholar 

  24. Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 1908, 25, 377–445.

    Article  Google Scholar 

  25. Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters. Springer-Verlag: New York, 1995.

    Book  Google Scholar 

  26. Donkers, R. L.; Lee, D.; Murray, R. W. Synthesis and isolation of the molecule-like cluster Au38(PhCH2CH2S)24. Langmuir 2004, 20, 1945–1952.

    Article  Google Scholar 

  27. Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. W. Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc. 2008, 130, 3754–3755.

    Article  Google Scholar 

  28. Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 2008, 130, 5883–5885.

    Article  Google Scholar 

  29. Wu, Z.; Gayathri, C.; Gil, R.; Jin, R. Probing the structure and charge state of glutathione-capped Au25(SG)18 clusters by NMR and mass spectrometry. J. Am. Chem. Soc. 2009, 131, 6535–6542.

    Article  Google Scholar 

  30. Venzo, A.; Antonello, S.; Gascon, J. A.; Guryanov, I.; Leapman, R. D.; Perera, N. V.; Sousa, A. A.; Zamuner, M.; Zanella, A.; Maran, F. Effect of the charge state (z = −1, 0, +1) on the nuclear magnetic resonance of monodisperse Au25[S(CH2)2Ph] z18 . Anal. Chem. 2011, 83, 6355–6362.

    Article  Google Scholar 

  31. Liu, Z.; Zhu, M.; Meng, X.; Xu, G.; Jin, R. Electron transfer between Au25(SC2H4Ph) 18 TOA+ nanoclusters and oxoammonium cations. J. Phys. Chem. Lett. 2011, 2, 2104–2109.

    Article  Google Scholar 

  32. Aikens, C. M. Electronic Structure of ligand-passivated gold and silver nanoclusters. J. Phys. Chem. Lett. 2011, 2, 99–104.

    Article  Google Scholar 

  33. Zhu, M.; Eckenhoff, W. T.; Pintauer, T.; Jin, R. Conversion of anionic [Au25(SCH2CH2Ph)18] cluster to charge neutral cluster via air oxidation. J. Phys. Chem. C 2008, 112, 14221–14224.

    Article  Google Scholar 

  34. Zhu, M.; Aikens, C. M.; Hendrich, M. P.; Gupta, R.; Qian, H.; Schatz, G. C.; Jin, R. Reversible switching of magnetism in thiolate-protected Au25 superatoms. J. Am. Chem. Soc. 2009, 131, 2490–2492.

    Article  Google Scholar 

  35. Fields-Zinna, C. A.; Crowe, M. C.; Dass, A.; Weaver, J. E. F.; Murray, R. W. Mass spectrometry of small bimetal monolayer-protected clusters. Langmuir 2009, 25, 7704–7710.

    Article  Google Scholar 

  36. Walter, M.; Moseler, M. Ligand-protected gold alloy clusters: Doping the superatom. J. Phys. Chem. C 2009, 113, 15834–15837.

    Article  Google Scholar 

  37. Negishi, Y.; Kurashige, W.; Niihori, Y.; Iwasa, T.; Nobusada, K. Isolation, structure, and stability of a dodecanethiolate-protected Pd1Au24 cluster. Phys. Chem. Chem. Phys. 2010, 12, 6219–6225.

    Article  Google Scholar 

  38. Qian, H.; Barry, E.; Zhu, Y.; Jin, R. Doping 25-atom and 38-atom gold nanoclusters with palladium. Acta Phys. -Chim. Sin. 2011, 27, 513–519.

    Google Scholar 

  39. Wu, Z.; Suhan, J.; Jin, R. One-pot synthesis of atomically monodisperse, thiol-functionalized Au25 nanoclusters. J. Mater. Chem. 2009, 19, 622–626.

    Article  Google Scholar 

  40. Parker, J. F.; Weaver, J. E. F.; McCallum, F.; Fields-Zinna, C. A.; Murray, R. W. Synthesis of monodisperse [Oct4N+][Au25(SR) 18 ] nanoparticles, with some mechanistic observations. Langmuir 2010, 26, 13650–13654.

    Article  Google Scholar 

  41. Zhu, M.; Chan, G.; Qian, H.; Jin, R. Unexpected reactivity of Au25(SCH2CH2Ph)18 nanoclusters with salts. Nanoscale 2011, 3, 1703–1707.

    Article  Google Scholar 

  42. Niihori, Y.; Kurashige, W.; Matsuzaki, M.; Negishi, Y. Remarkable enhancement in ligand-exchange reactivity of thiolate-protected Au25 nanoclusters by single Pd atom doping. Nanoscale 2013, 5, 508–512.

    Article  Google Scholar 

  43. Zhu, M.; Qian, H.; Meng, X.; Jin, S.; Wu, Z.; Jin, R. Chiral Au25 nanospheres and nanorods: Synthesis and insight into the origin of chirality. Nano Lett. 2011, 11, 3963–3969.

    Article  Google Scholar 

  44. Kumar, S.; Jin, R. Water-soluble Au25(Capt)18 nanoclusters: Synthesis, thermal stability, and optical properties. Nanoscale 2012, 4, 4222–4227.

    Article  Google Scholar 

  45. Qian, H.; Jiang, D.-E.; Li, G.; Gayathri, C.; Das, A.; Gil, R. R.; Jin, R. Monoplatinum doping of gold nanoclusters and catalytic application. J. Am. Chem. Soc. 2012, 134, 16159–16162.

    Article  Google Scholar 

  46. MacDonald, M. A.; Chevrier, D. M.; Zhang, P.; Qian, H.; Jin, R. The structure and bonding of Au25(SR)18 nanoclusters from EXAFS: The interplay of metallic and molecular behavior. J. Phys. Chem. C 2011, 115, 15282–15287.

    Article  Google Scholar 

  47. Christensen, S. L.; MacDonald, M. A.; Chatt, A.; Zhang, P.; Qian, H.; Jin, R. Dopant location, local structure, and electronic properties of Au24Pt(SR)18 nanoclusters. J. Phys. Chem. C 2012, 116, 26932–26937.

    Article  Google Scholar 

  48. Negishi, Y.; Iwai, T.; Ide, M. Continuous modulation of electronic structure of stable thiolate-protected Au25 cluster by Ag doping. Chem. Commun. 2010, 46, 4713–4715.

    Article  Google Scholar 

  49. Gottlieb, E.; Qian, H.; Jin, R. Atomic-level alloying and de-alloying in doped gold nanoparticles. Chem. Eur. J. 2013, 19, 4238–4243.

    Article  Google Scholar 

  50. Kauffman, D. R.; Alfonso, D.; Matranga, C.; Qian, H.; Jin, R. A quantum alloy: The ligand-protected Au25-x Agx(SR)18 cluster. J. Phys. Chem. C 2013, 117, 7914–7923.

    Article  Google Scholar 

  51. Ackerman, M.; Stafford, F. E.; Drowart, J. Mass spectrometric determination of the dissociation energies of the molecules AgAu, AgCu, and AuCu. J. Chem. Phys. 1960, 33, 1784–1789.

    Article  Google Scholar 

  52. Negishi, Y.; Munakata, K.; Ohgake, W.; Nobusada, K. Effect of copper doping on electronic structure, geometric structure, and stability of thiolate-protected Au25 nanoclusters. J. Phys. Chem. Lett. 2012, 3, 2209–2214.

    Article  Google Scholar 

  53. Chaki, N. K.; Negishi, Y.; Tsunoyama, H.; Shichibu, Y.; Tsukuda, T. Ubiquitous 8 and 29 kDa gold:alkanethiolate cluster compounds: Mass-spectrometric determination of molecular formulas and structural implications. J. Am. Chem. Soc. 2008, 130, 8608–8610.

    Article  Google Scholar 

  54. Qian, H.; Zhu, Y.; Jin, R. Size-focusing synthesis, optical and electrochemical properties of monodisperse Au38(SC2H4Ph)24 nanoclusters. ACS Nano 2009, 3, 3795–3803.

    Article  Google Scholar 

  55. Qian, H.; Eckenhoff, W. T.; Zhu, Y.; Pintauer, T.; Jin, R. Total structure determination of thiolate-protected Au38 nanoparticles. J. Am. Chem. Soc. 2010, 132, 8280–8281.

    Article  Google Scholar 

  56. Pei, Y.; Gao, Y.; Zeng, X. C. Structural prediction of thiolate-protected Au38: A face-fused bi-icosahedral Au core. J. Am. Chem. Soc. 2008, 130, 7830–7832.

    Article  Google Scholar 

  57. Lopez-Acevedo, O.; Tsunoyama, H.; Tsukuda, T.; Häkkinen, H.; Aikens, C. M. Chirality and electronic structure of the thiolate-protected Au38 nanocluster. J. Am. Chem. Soc. 2010, 132, 8210–8218.

    Article  Google Scholar 

  58. Toikkanen, O.; Carlsson, S.; Dass, A.; Rönnholm, G.; Kalkkinen, N.; Quinn, B. M. Solvent-dependent stability of monolayer-protected Au38 clusters. J. Phys. Chem. Lett. 2010, 1, 32–37.

    Article  Google Scholar 

  59. Qian, H.; Zhu, M.; Gayathri, C.; Gil, R. R.; Jin, R. Chirality in gold nanoclusters probed by NMR spectroscopy. ACS Nano 2011, 5, 8935–8942.

    Article  Google Scholar 

  60. Knoppe, S.; Azoulay, R.; Dass, A.; Bürgi, T. In situ reaction monitoring reveals a diastereoselective ligand exchange reaction between the intrinsically chiral Au38(SR)24 and chiral thiols. J. Am. Chem. Soc. 2012, 134, 20302–20305.

    Article  Google Scholar 

  61. Devadas, M. S.; Bairu, S.; Qian, H.; Sinn, E.; Jin, R.; Ramakrishna, G. Temperature-dependent optical absorption properties of monolayer-protected Au25 and Au38 clusters. J. Phys. Chem. Lett. 2011, 2, 2752–2758.

    Article  Google Scholar 

  62. Negishi, Y.; Igarashi, K.; Munakata, K.; Ohgake, W.; Nobusada, K. Palladium doping of magic gold cluster Au38(SC2H4Ph)24: Formation of Pd2Au36(SC2H4Ph)24 with higher stability than Au38(SC2H4Ph)24. Chem. Commun. 2012, 48, 660–662.

    Article  Google Scholar 

  63. Kumara, C.; Dass, A. AuAg alloy nanomolecules with 38 metal atoms. Nanoscale 2012, 4, 4084–4086.

    Article  Google Scholar 

  64. Ferrando, R.; Jellinek, J.; Johnston, R. L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008, 108, 845–910.

    Article  Google Scholar 

  65. Qian, H.; Jin, R. Controlling nanoparticles with atomic precision: The case of Au144(SCH2CH2Ph)60. Nano Lett. 2009, 9, 4083–4087.

    Article  Google Scholar 

  66. Qian, H.; Jin, R. Ambient synthesis of Au144(SR)60 nanoclusters in methanol. Chem. Mater. 2011, 23, 2209–2217.

    Article  Google Scholar 

  67. Kumara, C.; Dass, A. (AuAg)144(SR)60 alloy nanomolecules. Nanoscale 2011, 3, 3064–3067.

    Article  Google Scholar 

  68. Koivisto, J.; Malola, S.; Kumara, C.; Dass, A.; Häkkinen, H.; Pettersson, M. Experimental and theoretical determination of the optical gap of the Au144(SC2H4Ph)60 cluster and the (Au/Ag)144(SC2H4Ph)60 nanoalloys. J. Phys. Chem. Lett. 2012, 3, 3076–3080.

    Article  Google Scholar 

  69. Malola, S.; Häkkinen, H. Electronic structure and bonding of icosahedral core-shell gold-silver nanoalloy clusters Au144−x Agx(SR)60. J. Phys. Chem. Lett. 2011, 2, 2316–2321.

    Article  Google Scholar 

  70. Xie, S.; Tsunoyama, H.; Kurashige, W.; Negishi, Y.; Tsukuda, T. Enhancement in aerobic alcohol oxidation catalysis of Au25 clusters by single Pd atom doping. ACS Catal. 2012, 2, 1519–1523.

    Article  Google Scholar 

  71. Kurashige, W.; Munakata, K.; Nobusada, K.; Negishi, Y. Synthesis of stable CunAu25−n nanoclusters (n = 1–9) using selenolate ligands. Chem. Commun. 2013, 49, 5447–5449.

    Article  Google Scholar 

  72. Yao, H.; Miki, K.; Nishida, N.; Sasaki, A.; Kimura, K. Large optical activity of gold nanocluster enantiomers induced by a pair of optically active penicillamines. J. Am. Chem. Soc. 2005, 127, 15536–15543.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuyuki Nobusada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, R., Nobusada, K. Doping and alloying in atomically precise gold nanoparticles. Nano Res. 7, 285–300 (2014). https://doi.org/10.1007/s12274-014-0403-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0403-5

Keywords

Navigation