Skip to main content
Log in

Ionic effects on the transport characteristics of nanowire-based FETs in a liquid environment

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

For the development of ultra-sensitive electrical bio/chemical sensors based on nanowire field effect transistors (FETs), the influence of the ions in the solution on the electron transport has to be understood. For this purpose we establish a simulation platform for nanowire FETs in the liquid environment by implementing the modified Poisson-Boltzmann model into Landauer transport theory. We investigate the changes of the electric potential and the transport characteristics due to the ions. The reduction of sensitivity of the sensors due to the screening effect from the electrolyte could be successfully reproduced. We also fabricated silicon nanowire Schottky-barrier FETs and our model could capture the observed reduction of the current with increasing ionic concentration. This shows that our simulation platform can be used to interpret ongoing experiments, to design nanowire FETs, and it also gives insight into controversial issues such as whether ions in the buffer solution affect the transport characteristics or not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

    Article  Google Scholar 

  2. Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical properties of carbon nanotubes; Imperial College Press: London, 1998.

    Book  Google Scholar 

  3. Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.

    Article  Google Scholar 

  4. Westwater, J.; Gosain, D. P.; Tomiya, S.; Usui, S.; Ruda, H. Growth of silicon nanowires via gold/silane vapor-liquidsolid reaction. J. Vac. Sci. Technol. B 1997, 15, 554–557.

    Article  Google Scholar 

  5. Schmidt, V.; Wittemann, J. V.; Gösele, U. Growth, thermodynamics, and electrical properties of silicon nanowires. Chem. Rev. 2010, 110, 361–388.

    Article  Google Scholar 

  6. Rurali, R. Colloquium: Structural, electronic, and transport properties of silicon nanowires. Rev. Mod. Phys. 2010, 82, 427–449.

    Article  Google Scholar 

  7. Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Room- temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52.

    Article  Google Scholar 

  8. Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, Ph. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 1998, 73, 2447–2449.

    Article  Google Scholar 

  9. Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.

    Article  Google Scholar 

  10. Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. Nanotube molecular wires as chemical sensors. Science 2000, 287, 622–625.

    Article  Google Scholar 

  11. Lauhon, L. J.; Gudiksen, M. S.; Wang, D.; Lieber, C. M. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 2002, 420, 57–61.

    Article  Google Scholar 

  12. Comini, E.; Faglia, G.; Sberveglieri, G.; Pan, Z.; Wang, Z. L. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 2002, 81, 1869–1871.

    Article  Google Scholar 

  13. Hahm, J.; Lieber, C. M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 2004, 4, 51–54.

    Article  Google Scholar 

  14. Heinze, S.; Tersoff, J.; Martel, R.; Derycke, V.; Appenzeller, J.; Avouris, Ph. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 2002, 89, 106801.

    Article  Google Scholar 

  15. Appenzeller, J. M.; Radosavljevic, M.; Knoch, J.; Avouris, Ph. Tunneling versus thermionic emission in one-dimensional semiconductors. Phys. Rev. Lett. 2004, 92, 048301.

    Article  Google Scholar 

  16. Nair, P. R.; Alam, M. A. Design considerations of silicon nanowire biosensors. IEEE Trans. Elec. Dev. 2007, 54, 3400–3408.

    Article  Google Scholar 

  17. Heitzinger, C.; Kennell, R.; Klimeck, G.; Mauser, N.; McLennan, M.; Ringhofer, C. Modeling and simulation of field-effect biosensors (biofets) and their deployment on the NanoHub. J. Phys.: Conf. Ser. 2008, 107, 012004.

    Google Scholar 

  18. Birner, S.; Hackenbuchner, S.; Sabathil, M.; Zandler, G.; Majewski, J. A.; Andlauer, T.; Zibold, T.; Morschl, R.; Trellakis, A.; Vogl, P. Modeling of semiconductor nanostructures with nextnano3. Acta Phys. Polon. 2006, 111, 111–115.

    Google Scholar 

  19. Lee, J.; Shin, M.; Ahn, C. G.; Ah, C. S.; Park, C. W.; Sung, G. Y. Effects of pH and ion concentration in a phosphate buffer solution on the sensitivity of silicon nanowire bioFETs. J. Korean Phys. Soc. 2009, 55, 1621–1625.

    Article  Google Scholar 

  20. Elfström, N.; Juhasz, R.; Sychugov, I.; Engfeldt, T.; Karlström, A. E. Surface charge sensitivity of silicon nanowires: Size dependence. Nano Lett. 2007, 7, 2608–2612.

    Article  Google Scholar 

  21. Chen, Y.; Wang, X.; Erramilli, S.; Mohanty, P.; Kalinowski, A. Silicon-based nanoelectronic field-effect pH sensor with local gate control. App. Phys. Lett. 2006, 89, 223512.

    Article  Google Scholar 

  22. Li, Z.; Chen, Y.; Li, X.; Kamins, T. I.; Nauka, K.; Williams, R. S. Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett. 2004, 4, 245–247.

    Article  Google Scholar 

  23. Fan, Z.; Lu, J. G. Gate-refreshable nanowire chemical sensors. Appl. Phys. Lett. 2005, 86, 123510.

    Article  Google Scholar 

  24. Stern, E.; Wagner, R.; Sigworth, F. J.; Breaker, R.; Fahmy, T. M.; Reed, M. A. Importance of the Debye screening length on nanowire field effect transistor sensors. Nano Lett. 2007, 7, 3405–3409.

    Article  Google Scholar 

  25. Kurkina, T.; Vlandas, A.; Ahmad, A.; Kern, K.; Balasubramanian, K. Label-free detection of few copies of DNA with carbon nanotube impedance biosensors. Angew. Chem. Int. Ed. 2011, 50, 3710–3714.

    Article  Google Scholar 

  26. Russel, W. B.; Saville, D. A.; Schowalter, W. R. Colloidal Dispersions; Cambridge University Press: Cambridge, 1989.

    Book  Google Scholar 

  27. Borukhov, I.; Andelman, D.; Orland, H. Steric effects in electrolytes: A modified Poisson-Boltzmann equation. Phys. Rev. Lett. 1997, 79, 435–438.

    Article  Google Scholar 

  28. Pham, P.; Howorth, M.; Planat-Chretien, A.; Tardu, S. Numerical simulation of the electrical double layer based on the Poisson-Boltzmann models for ac electroosmosis flows. COMSOL Users Conference 2007, Grenoble, 2007.

    Google Scholar 

  29. Kilic, M. S.; Bazant, M. Z.; Ajdari, A. Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys. Rev. E 2007, 75, 021502.

    Article  Google Scholar 

  30. Kilic, M. S.; Bazant, M. Z.; Ajdari, A. Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. Phys. Rev. E 2007, 75, 021503.

    Article  Google Scholar 

  31. Nozaki, D.; Kunstmann, J.; Zörgiebel, F.; Weber, W. M.; Mikolajick, T.; Cuniberti, G. Multiscale modeling of nanowirebased Schottky-barrier field-effect transistors for sensor applications. Nanotechnology 2011, 22, 325703.

    Article  Google Scholar 

  32. COMSOL Multiphysics, version 3.5 http://www.comsol.com.

  33. Datta, S. Electronic Transport in Mesoscopic Systems; Cambridge University Press: Cambridge, 1995.

    Book  Google Scholar 

  34. Clément, N.; Nishiguchi, K.; Dufreche, J. F.; Guerin, D.; Fujisawa, A.; Vuillaume, D. A silicon nanowire ion-sensitive field-effect transistor with elementary charge sensitivity. Appl. Phys. Lett. 2001, 98, 014104.

    Article  Google Scholar 

  35. Knopfmacher, O.; Tarasov, A.; Wipf, M.; Fu, W.; Calame, M.; Schönenberger, C. Silicon-based ion-sensitive field-effect transistor shows negligible dependence on salt concentration at constant pH. ChemPhysChem 2012, 13, 1157–1160.

    Article  Google Scholar 

  36. Nikolaides, M. G.; Rauschenbach, S.; Luber, S.; Buchholz, K.; Tornow, M.; Abstreiter, G.; Bausch, A. R. Silicon-on-insulator based thin-film resistor for chemical and biological sensor applications. ChemPhysChem 2003, 4, 1104–1106.

    Article  Google Scholar 

  37. Park, I.; Li, Z.; Pisano, A. P.; Williams, R. S. Top-down fabricated silicon nanowire sensors for real-time chemical detection. Nanotechnology 2010, 21, 015501.

    Article  Google Scholar 

  38. Weber, W. M.; Geelhaar, L.; Graham, A. P.; Unger, E.; Duesberg, G. S.; Liebau, M.; Pamler, W.; Chèze, C.; Riechert, H.; Lugli, P.; Kreupl, F. Silicon-nanowire transistors with intruded nickel-silicide contacts. Nano Lett. 2010, 6, 2660–2666.

    Article  Google Scholar 

  39. Pregl, S.; Weber, W. M.; Nozaki, D.; Kunstmann, J.; Baraban, L.; Optiz, J.; Mikolajick, T.; Cuniberti, G. Parallel arrays of Schottky barrier nanowire field effect transistors: Nanoscopic effects for macroscopic current output. Nano Res. 2013, 6, 381–388.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daijiro Nozaki.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nozaki, D., Kunstmann, J., Zörgiebel, F. et al. Ionic effects on the transport characteristics of nanowire-based FETs in a liquid environment. Nano Res. 7, 380–389 (2014). https://doi.org/10.1007/s12274-013-0404-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0404-9

Keywords

Navigation