Skip to main content
Log in

Quantitative study of protein coronas on gold nanoparticles with different surface modifications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Protein coronas provide the biological identity of nanomaterials in vivo. Here we have used dynamic light scattering (DLS) and transmission electron microscopy (TEM) to investigate the adsorption of serum proteins, including bovine serum albumin (BSA), transferrin (TRF) and fibrinogen (FIB), on gold nanoparticles (AuNPs) with different surface modifications (citrate, thioglycolic acid, cysteine, polyethylene glycol (PEG, M w = 2 k and 5 k)). AuNPs with PEG(5 k) surface modification showed no protein adsorption. AuNPs with non-PEG surface modifications showed aggregation with FIB. AuNPs with citrate and thioglycolic acid surface modifications showed 6–8 nm thick BSA and TRF coronas (corresponding to monolayer or bilayer proteins), in which the microscopic dissociation constants of BSA and TRF protein coronas are in the range of 10−8 to 10−6 M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.

    Article  Google Scholar 

  2. Hong, G. S.; Lee, J. C.; Robinson, J. T.; Raaz, U.; Xie, L. M.; Huang, N. F.; Cooke, J. P.; Dai, H. J. Multifunctional in vivo vascular imaging using near-infrared ii fluorescence. Nat. Med. 2012, 18, 1841–1846.

    Article  Google Scholar 

  3. Petros, R. A.; DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug. Discov. 2010, 9, 615–627.

    Article  Google Scholar 

  4. Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128, 2115–2120.

    Article  Google Scholar 

  5. Liu, Z.; Robinson, J. T.; Tabakman, S. M.; Yang, K.; Dai, H. J. Carbon materials for drug delivery and cancer therapy. Mater. Today 2011, 14, 316–323.

    Article  Google Scholar 

  6. Monopoli, M. P.; Aberg, C.; Salvati, A.; Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 2012, 7, 779–786.

    Article  Google Scholar 

  7. Tsai, D. H.; DelRio, F. W.; Keene, A. M.; Tyner, K. M.; MacCuspie, R. I.; Cho, T. J.; Zachariah, M. R.; Hackley, V. A. Adsorption and conformation of serum albumin protein on gold nanoparticles investigated using dimensional measurements and in situ spectroscopic methods. Langmuir 2011, 27, 2464–2477.

    Article  Google Scholar 

  8. Casals, E.; Pfaller, T.; Duschl, A.; Oostingh, G. J.; Puntes, V. Time evolution of the nanoparticle protein corona. ACS Nano 2010, 4, 3623–3632.

    Article  Google Scholar 

  9. Lacerda, S. H. D. P.; Park, J. J.; Meuse, C.; Pristinski, D.; Becker, M. L.; Karim, A.; Douglas, J. F. Interaction of gold nanoparticles with common human blood proteins. ACS Nano 2010, 4, 365–379.

    Article  Google Scholar 

  10. Dominguez-Medina, S.; McDonough, S.; Swanglap, P.; Landes, C. F.; Link, S. In situ measurement of bovine serum albumin interaction with gold nanospheres. Langmuir 2012, 28, 9131–9139.

    Article  Google Scholar 

  11. Deng, Z. J.; Liang, M. T.; Toth, I.; Monteiro, M. J.; Minchin, R. F. Molecular interaction of poly(acrylic acid) gold nanoparticles with human fibrinogen. ACS Nano 2012, 6, 8962–8969.

    Article  Google Scholar 

  12. Röcker, C.; Pötzl, M.; Zhang, F.; Parak, W. J.; Nienhaus, G. U. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat. Nanotechnol. 2009, 4, 577–580.

    Article  Google Scholar 

  13. Shao, L. W.; Dong, C. Q.; Sang, F. M.; Qian, H. F.; Ren, J. C. Studies on interaction of CdTe quantum dots with bovine serum albumin using fluorescence correlation spectroscopy. J. Fluoresc. 2009, 19, 151–157.

    Article  Google Scholar 

  14. Jiang, X.; Weise, S.; Hafner, M.; Röcker, C.; Zhang, F.; Parak, W. J.; Nienhaus, G. U. Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding. J. R. Soc. Interface 2010, 7, S5–S13.

    Article  Google Scholar 

  15. Maffre, P.; Nienhaus, K.; Amin, F.; Parak, W. J.; Nienhaus, G. U. Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy. Beilstein J. Nanotechnol. 2011, 2, 374–383.

    Article  Google Scholar 

  16. Milani, S.; Bombelli, F. B.; Pitek, A. S.; Dawson, K. A.; Rädler, J. Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: Soft and hard corona. ACS Nano 2012, 6, 2532–2541.

    Article  Google Scholar 

  17. Cedervall, T.; Lynch, I.; Lindman, S.; Berggård, T.; Thulin, E.; Nilsson, H.; Dawson, K. A.; Linse, S. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA 2007, 104, 2050–2055.

    Article  Google Scholar 

  18. Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K. A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA 2008, 105, 14265–14270.

    Article  Google Scholar 

  19. Zhang, H. Z.; Burnum, K. E.; Luna, M. L.; Petritis, B. O.; Kim, J. S.; Qian, W. J.; Moore, R. J.; Heredia-Langner, A.; Webb-Robertson, B. J. M.; Thrall, B. D. et al. Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size. Proteomics 2011, 11, 4569–4577.

    Article  Google Scholar 

  20. Walkey, C. D.; Olsen, J. B.; Guo, H. B.; Emili, A.; Chan, W. C. W. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 2012, 134, 2139–2147.

    Article  Google Scholar 

  21. Zhu, T.; Vasilev, K.; Kreiter, M.; Mittler, S.; Knoll, W. Surface modification of citrate-reduced colloidal gold nanoparticles with 2-mercaptosuccinic acid. Langmuir 2003, 19, 9518–9525.

    Article  Google Scholar 

  22. Rucareanu, S.; Gandubert, V. J.; Lennox, R. B. 4-(N,N-dimethylamino)pyridine-protected Au nanoparticles: Versatile precursors for water- and organic-soluble gold nanoparticles. Chem. Mater. 2006, 18, 4674–4680.

    Article  Google Scholar 

  23. Wright, A. K.; Thompson, M. R. Hydrodynamic structure of bovine serum-albumin determined by transient electric birefringence. Biophys. J. 1975, 15, 137–141.

    Article  Google Scholar 

  24. Armstrong, J. K.; Wenby, R. B.; Meiselman, H. J.; Fisher, T. C. The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation. Biophys. J. 2004, 87, 4259–4270.

    Article  Google Scholar 

  25. Weisel, J. W.; Litvinov, R. I. Mechanisms of fibrin polymerization and clinical implications. Blood 2013, 121, 1712–1719.

    Article  Google Scholar 

  26. Bailey, S.; Evans, R. W.; Garratt, R. C.; Gorinsky, B.; Hasnain, S.; Horsburgh, C.; Jhoti, H.; Lindley, P. F.; Mydin, A.; Sarra, R. et al. Molecular structure of serum transferrin at 3.3-A resolution. Biochemistry 1988, 27, 5804–5812.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Liu or Liming Xie.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, M., Liu, R., Deng, Z. et al. Quantitative study of protein coronas on gold nanoparticles with different surface modifications. Nano Res. 7, 345–352 (2014). https://doi.org/10.1007/s12274-013-0400-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0400-0

Keywords

Navigation