Skip to main content
Log in

Direct observation of Pt nanocrystal coalescence induced by electron-excitation-enhanced van der Waals interactions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanocrystal coalescence has attracted paramount attention in nanostructure fabrication in the past decades. Tremendous endeavor and progress have been made in understanding its mechanisms, benefiting from the development of transmission electron microscopy. However, many mechanisms still remain unclear, especially for nanocrystals that lack a permanent dipole moment standing on a solid substrate. Here, we report an in situ coalescence of Pt nanocrystals on an amorphous carbon substrate induced by electron-excitationenhanced van der Waals interactions studied by transmission electron microscopy and first principles calculations. It is found that the electron-beam-induced excitation can significantly enhance the van der Waals interaction between Pt nanocrystals and reduce the binding energy between Pt nanocrystals and the carbon substrate, both of which promote the coalescence. This work extends our understanding of the nanocrystal coalescence observed in a transmission electron microscope and sheds light on a potential pathway toward practical electronbeam-controlled nanofabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alivisatos, A. P. Nanocrystals: Building blocks for modern materials design. Endeavour 1997, 21, 56–60.

    Article  Google Scholar 

  2. Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179.

    Article  Google Scholar 

  3. Rao, C. N. R.; Kulkarni, G. U.; Thomas, P. J.; Edwards, P. P. Size-dependent chemistry: Properties of nanocrystals. Chem. Eur. J. 2002, 8, 28–35.

    Article  Google Scholar 

  4. Zhang, H.; Jin, M. S.; Xiong, Y. J.; Lim, B.; Xia, Y. N. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Acc. Chem. Res. 2013, 46, 1783–1794.

    Article  Google Scholar 

  5. Xiao, Q. F.; Weng, D.; Yang, Z. L.; Garay, J.; Zhang, M. J.; Lu, Y. F. Efficient synthesis of PbTe nanoparticle networks. Nano Res. 2010, 3, 685–693.

    Article  Google Scholar 

  6. Penn, R. L.; Banfield, J. F. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania. Geochim. Cosmochim. Acta 1999, 63, 1549–1557.

    Article  Google Scholar 

  7. Pacholski, C.; Kornowski, A.; Weller, H. Self-assembly of ZnO: From nanodots to nanorods. Angew. Chem. Int. Edit. 2002, 41, 1188–1191.

    Article  Google Scholar 

  8. van Huis, M. A.; Kunneman, L. T.; Overgaag, K.; Xu, Q.; Pandraud, G.; Zandbergen, H. W.; Vanmaekelbergh, D. Low-temperature nanocrystal unification through rotations and relaxations probed by in situ transmission electron microscopy. Nano Lett. 2008, 8, 3959–3963.

    Article  Google Scholar 

  9. Koga, K.; Takeo, H. In situ observation of coalescence growth of small gold clusters by X-ray diffraction technique. Eur. Phys. J. D 1999, 9, 535–538.

    Article  Google Scholar 

  10. Asoro, M. A.; Kovar, D.; Shao-Horn, Y.; Allard, L. F.; Ferreira, P. J. Coalescence and sintering of Pt nanoparticles: In situ observation by aberration-corrected HAADF STEM. Nanotechnology 2010, 21, 025701.

    Article  Google Scholar 

  11. Liao, H. G.; Cui, L. K.; Whitelam, S.; Zheng, H. M. Real-time imaging of Pt3Fe nanorod growth in solution. Science 2012, 336, 1011–1014.

    Article  Google Scholar 

  12. Courty, A.; Henry, A. I.; Goubet, N.; Pileni, M. P. Large triangular single crystals formed by mild annealing of self-organized silver nanocrystals. Nat. Mater. 2007, 6, 900–907.

    Article  Google Scholar 

  13. Satoh, N.; Hasegawa, H.; Tsujii, K.; Kimura, K. Photoinduced coagulation of Au nanocolloids. J. Phys. Chem. 1994, 98, 2143–2147.

    Article  Google Scholar 

  14. Jin, R. C.; Cao, Y. W.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001, 294, 1901–1903.

    Article  Google Scholar 

  15. Liao, H. G.; Zheng, H. M. Liquid cell transmission electron microscopy study of platinum iron nanocrystal growth and shape evolution. J. Am. Chem. Soc. 2013, 135, 5038–5043.

    Article  Google Scholar 

  16. Giersig, M.; Pastoriza-Santos, I.; Liz-Marzán, L. M. Evidence of an aggregative mechanism during the formation of silver nanowires in N,N-dimethylformamide. J. Mater. Chem. 2004, 14, 607–610.

    Article  Google Scholar 

  17. Dai, Y. Q.; Cobley, C. M.; Zeng, J.; Sun, Y. M.; Xia, Y. N. Synthesis of anatase TiO2 nanocrystals with exposed {001} facets. Nano Lett. 2009, 9, 2455–2459.

    Article  Google Scholar 

  18. Schliehe, C.; Juarez, B. H.; Pelletier, M.; Jander, S.; Greshnykh, D.; Nagel, M.; Meyer, A.; Foerster, S.; Kornowski, A.; Klinke, C. et al. Ultrathin PbS sheets by two-dimensional oriented attachment. Science 2010, 329, 550–553.

    Article  Google Scholar 

  19. Pradhan, N.; Xu, H. F.; Peng, X. G. Colloidal CdSe quantum wires by oriented attachment. Nano Lett. 2006, 6, 720–724.

    Article  Google Scholar 

  20. Smith, D. J.; Petford-Long, A. K.; Wallenberg, L. R.; Bovin, J. O. Dynamic atomic-level rearrangements in small gold particles. Science 1986, 233, 872–875.

    Article  Google Scholar 

  21. Zheng, H. M.; Smith, R. K.; Jun, Y. W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Observation of single colloidal platinum nanocrystal growth trajectories. Science 2009, 324, 1309–1312.

    Article  Google Scholar 

  22. Li, D. S.; Nielsen, M. H.; Lee, J. R. I.; Frandsen, C.; Banfield, J. F.; De Yoreo, J. J. Direction-specific interactions control crystal growth by oriented attachment. Science 2012, 336, 1014–1018.

    Article  Google Scholar 

  23. Simonsen, S. B.; Chorkendorff, I.; Dahl, S.; Skoglundh, M.; Sehested, J.; Helveg, S. Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM. J. Am. Chem. Soc. 2010, 132, 7968–7975.

    Article  Google Scholar 

  24. Simonsen, S. B.; Chorkendorff, I.; Dahl, S.; Skoglundh, M.; Sehested, J.; Helveg, S. Ostwald ripening in a Pt/SiO2 model catalyst studied by in situ TEM. J. Catal. 2011, 281, 147–155.

    Article  Google Scholar 

  25. Batson, P. E. Motion of gold atoms on carbon in the aberration-corrected STEM. Microsc. Microanal. 2008, 14, 89–97.

    Article  Google Scholar 

  26. Kurkina, L. I. Static polarizability of excited and charged alkali metal clusters. Phys. Solid State 2001, 43, 792–798.

    Article  Google Scholar 

  27. Tsung, C. K.; Kuhn, J. N.; Huang, W. Y.; Aliaga, C.; Hung, L. I.; Somorjai, G. A.; Yang, P. D. Sub-10 nm platinum nanocrystals with size and shape control: Catalytic study for ethylene and pyrrole hydrogenation. J. Am. Chem. Soc. 2009, 131, 5816–5822.

    Article  Google Scholar 

  28. Koebel, M. M.; Jones, L. C.; Somorjai, G. A. Preparation of size-tunable, highly monodisperse PVP-protected Pt-nanoparticles by seed-mediated growth. J. Nanopart. Res. 2008, 10, 1063–1069.

    Article  Google Scholar 

  29. Malina, D.; Sobczak-Kupiec, A.; Wzorek, Z.; Kowalski, Z. Silver nanoparticles synthesis with different concentrations of polyvinylpyrrolidone. Dig. J. Nanomater. Bios. 2012, 7, 1527–1534.

    Google Scholar 

  30. Edmondson, P. D.; Weber, W. J.; Namavar, F.; Zhang, Y. Determination of the displacement energies of O, Si and Zr under electron beam irradiation. J. Nucl. Mater. 2012, 422, 86–91.

    Article  Google Scholar 

  31. Xu, Q. Y.; Wang, Y.; Wang, Y. G.; Du, X. L.; Xue, Q. K.; Zhang, Z. Polarity determination of ZnO thin films by electron holography. Appl. Phys. Lett. 2004, 84, 2067–2069.

    Article  Google Scholar 

  32. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

    Article  Google Scholar 

  33. Arcidiacono, S.; Bieri, N. R.; Poulikakos, D.; Grigoropoulos, C. P. On the coalescence of gold nanoparticles. Int. J. Multiphase Flow 2004, 30, 979–994.

    Article  Google Scholar 

  34. Batson, P. E.; Reyes-Coronado, A.; Barrera, R. G.; Rivacoba, A.; Echenique, P. M.; Aizpurua, J. Plasmonic nanobilliards: Controlling nanoparticle movement using forces induced by swift electrons. Nano Lett. 2011, 11, 3388–3393.

    Article  Google Scholar 

  35. Batson, P. E.; Reyes-Coronado, A.; Barrera, R. G.; Rivacoba, A.; Echenique, P. M.; Aizpurua, J. Nanoparticle movement: Plasmonic forces and physical constraints. Ultramicroscopy 2012, 123, 50–58.

    Article  Google Scholar 

  36. Polking, M. J.; Urban, J. J.; Milliron, D. J.; Zheng, H. M.; Chan, E.; Caldwell, M. A.; Raoux, S.; Kisielowski, C. F.; Ager, J. W.; Ramesh, R. et al. Size-dependent polar ordering in colloidal GeTe nanocrystals. Nano Lett. 2011, 11, 1147–1152.

    Article  Google Scholar 

  37. Klokkenburg, M.; Houtepen, A. J.; Koole, R.; de Folter, J. W. J.; Erné, B. H.; van Faassen, E.; Vanmaekelbergh, D. Dipolar structures in colloidal dispersions of PbSe and CdSe quantum dots. Nano Lett. 2007, 7, 2931–2936.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Wang, Shengbai Zhang or Ze Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Y., Wang, Y., Zhang, Y.Y. et al. Direct observation of Pt nanocrystal coalescence induced by electron-excitation-enhanced van der Waals interactions. Nano Res. 7, 308–314 (2014). https://doi.org/10.1007/s12274-013-0396-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0396-5

Keywords

Navigation