Skip to main content
Log in

Piezoresistive effect in MoO3 nanobelts and its application in strain-enhanced oxygen sensors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

MoO3 nanobelts (NBs) having different properties have been synthesized via a physical vapor deposition (PVD) method. The crystallographic structures and morphologies of the NBs were characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Electrical measurements were performed and the profound piezoresistive effect in MoO3 experimentally studied and verified. Factors that influence the gauge factor, such as NB size, doping concentration and atmosphere composition, are discussed and analyzed. Gas sensing performance was also tested in devices and it was demonstrated that by applying strain to the gas sensor, its sensing performance could be effectively tuned and enhanced. This study provides the first demonstration of significant piezoresistivity in MoO3 NBs and the first illustration of a generic mechanism by means of which this effect can be coupled with other electronic modulation measures to afford better device performance and broader material functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. King, R. B. Encyclopedia of Inorganic Chemistry. Wiley: Chichester; New York, 1994.

    Google Scholar 

  2. Mai, L. Q.; Hu, B.; Chen, W.; Qi, Y. Y.; Lao, C. S.; Yang, R. S.; Dai, Y.; Wang, Z. L. Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries. Adv. Mater. 2007, 19, 3712–3716.

    Article  Google Scholar 

  3. Lee, S. H.; Kim, Y. H.; Deshpande, R.; Parilla, P. A.; Whitney, E.; Gillaspie, D. T.; Jones, K. M.; Mahan, A. H.; Zhang, S. B.; Dillon, A. C. Reversible lithium-ion insertion in molybdenum oxide nanoparticles. Adv. Mater. 2008, 20, 3627–3632.

    Article  Google Scholar 

  4. Julien, C. M. Lithium intercalated compounds—Charge transfer and related properties. Mat. Sci. Eng. R 2003, 40, 47–102.

    Article  Google Scholar 

  5. Murugan, A. V.; Viswanath, A. K.; Gopinath, C. S.; Vijayamohanan, K. Highly efficient organic-inorganic poly(3,4-ethylenedioxythiophene)-molybdenum trioxide nanocomposite electrodes for electrochemical supercapacitor. J. Appl. Phys. 2006, 100, 074319-1–074319-5.

    Google Scholar 

  6. Shakir, I.; Shahid, M.; Yang, H. W.; Kang, D. J. Structural and electrochemical characterization of α-MoO3 nanorod-based electrochemical energy storage devices. Electrochim. Acta 2010, 56, 376–380.

    Article  Google Scholar 

  7. Shakir, I.; Shahid, M.; Nadeem, M.; Kang, D. J. Tin oxide coating on molybdenum oxide nanowires for high performance supercapacitor devices. Electrochim. Acta 2012, 72, 134–137.

    Article  Google Scholar 

  8. Scarminio, J.; Lourenco, A.; Gorenstein, A. Electrochromism and photochromism in amorphous molybdenum oxide films. Thin Solid Films 1997, 302, 66–70.

    Article  Google Scholar 

  9. Yao, J. N.; Yang, Y. A.; Loo, B. H. Enhancement of photochromism and electrochromism in MoO3/Au and MoO3/Pt thin films. J. Phys. Chem. B 1998, 102, 1856–1860.

    Article  Google Scholar 

  10. Ivanova, T.; Gesheva, K. A.; Popkirov, G.; Ganchev, M.; Tzvetkova, E. Electrochromic properties of atmospheric CVD MoO3 and MoO3-WO3 films and their application in electrochromic devices. Mat. Sci. Eng. B-Solid 2005, 119, 232–239.

    Article  Google Scholar 

  11. Zhou, J.; Xu, N. S.; Deng, S. Z.; Chen, J.; She, J. C.; Wang, Z. L. Large-area nanowire arrays of molybdenum and molybdenum oxides: Synthesis and field emission properties. Adv. Mater. 2003, 15, 1835–1840.

    Article  Google Scholar 

  12. Li, Y. B.; Bando, Y.; Golberg, D.; Kurashima, K. Field emission from MoO3 nanobelts. Appl. Phys. Lett. 2002, 81, 5048–5050.

    Article  Google Scholar 

  13. Fang, L.; Shu, Y. Y.; Wang, A. Q.; Zhang, T. Green synthesis and characterization of anisotropic uniform single-crystal α-MoO3 nanostructures. J. Phys. Chem. C 2007, 111, 2401–2408.

    Article  Google Scholar 

  14. Comini, E.; Yubao, L.; Brando, Y.; Sberveglieri, G. Gas sensing properties of MoO3 nanorods to CO and CH3OH. Chem. Phys. Lett. 2005, 407, 368–371.

    Article  Google Scholar 

  15. Prasad, A. K.; Kubinski, D. J.; Gouma, P. I. Comparison of sol-gel and ion beam deposited MoO3 thin film gas sensors for selective ammonia detection. Sensor Actuat. B-Chem. 2003, 93, 25–30.

    Article  Google Scholar 

  16. Ferroni, M.; Guidi, V.; Martinelli, G.; Nelli, P.; Sacerdoti, M.; Sberveglieri, G. Characterization of a molybdenum oxide sputtered thin film as a gas sensor. Thin Solid Films 1997, 307, 148–151.

    Article  Google Scholar 

  17. Deng, X.; Quek, S. Y.; Biener, M. M.; Biener, J.; Kang, D. H.; Schalek, R.; Kaxiras, E.; Friend, C. M. Selective thermal reduction of single-layer MoO3 nanostructures on Au(111). Surf. Sci. 2008, 602, 1166–1174.

    Article  Google Scholar 

  18. Hsu, Z. Y.; Zeng, H. C. Generation of double-layer steps on (010) surface of orthorhombic MoO3 via chemical etching at room temperature. J. Phys. Chem. B 2000, 104, 11891–11898.

    Article  Google Scholar 

  19. Windom, B. C.; Sawyer, W. G.; Hahn, D. W. A Raman spectroscopic study of MoS2 and MoO3: Applications to tribological systems. Tribol. Lett. 2011, 42, 301–310.

    Article  Google Scholar 

  20. Li, F. Y.; Chen, Z. F. Tuning electronic and magnetic properties of MoO3 sheets by cutting, hydrogenation, and external strain: A computational investigation. Nanoscale 2013, 5, 5321–5333.

    Article  Google Scholar 

  21. Barlian, A. A.; Park, W. T.; Mallon, J. R.; Rastegar, A. J.; Pruitt, B. L. Review: Semiconductor piezoresistance for microsystems. P. IEEE 2009, 97, 513–552.

    Article  Google Scholar 

  22. Wei, T. Y.; Yeh, P. H.; Lu, S. Y.; Wang, Z. L. Gigantic enhancement in sensitivity using Schottky contacted nanowire nanosensor. J. Am. Chem. Soc. 2009, 131, 17690–17695.

    Article  Google Scholar 

  23. Hu, B.; Mai, L. Q.; Chen, W.; Yang, F. From MoO3 nanobelts to MoO2 nanorods: Structure transformation and electrical transport. ACS Nano 2009, 3, 478–482.

    Article  Google Scholar 

  24. Rahmani, M. B.; Keshmiri, S. H.; Yu, J.; Sadek, A. Z.; Al-Mashat, L.; Moafi, A.; Latham, K.; Li, Y. X.; Wlodarski, W.; Kalantar-zadeh, K. Gas sensing properties of thermally evaporated lamellar MoO3. Sensor Actuat. B-Chem. 2010, 145, 13–19.

    Article  Google Scholar 

  25. Sunu, S. S.; Prabhu, E.; Jayaraman, V.; Gnanasekar, K. I.; Seshagiri, T. K.; Gnanasekaran, T. Electrical conductivity and gas sensing properties of MoO3. Sensor. Actuat. B-Chem. 2004, 101, 161–174.

    Article  Google Scholar 

  26. Illyaskutty, N.; Kohler, H.; Trautmann, T.; Schwotzer, M.; Pillai, V. P. M. Enhanced ethanol sensing response from nanostructured MoO3:ZnO thin films and their mechanism of sensing. J. Mater. Chem. C 2013, 1, 3976–3984.

    Article  Google Scholar 

  27. Soutas-Little, R. W. Elasticity. Dover Publications: Mineola, NY, 1999; p xvi, p.431.

    Google Scholar 

  28. Wang, Z. L. Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics. Nano Today 2010, 5, 540–552.

    Article  Google Scholar 

  29. Wang, Z. L. ZnO nanowire and nanobelt platform for nanotechnology. Mat. Sci. Eng. R 2009, 64, 33–71.

    Google Scholar 

  30. Wen, X. N.; Wu, W. Z.; Ding, Y.; Wang, Z. L. Piezotronic effect in flexible thin-film based devices. Adv. Mater. 2013, 25, 3371–3379.

    Article  Google Scholar 

  31. Bao, M.-H. Analysis and design principles of MEMS devices. Elsevier: Amsterdam; Boston; London, 2005; pp 1 online resource (xii, p.312).

    Book  Google Scholar 

  32. Hull, R.; INSPEC (Information service), properties of crystalline silicon. In EMIS Data Reviews Series No. 20, INSPEC the Institution of Electrical Engineers: London, 1999; p 1 online resource (xxvi, p.1016).

    Google Scholar 

  33. French, P. J.; Evans, A. G. R. Piezoresistance in polysilicon. Electron. Lett. 1984, 20, 999–1000.

    Article  Google Scholar 

  34. French, P. J.; Evans, A. G. R. Piezoresistance in polysilicon and its applications to strain-gauges. Solid State Electron 1989, 32, 1–10.

    Article  Google Scholar 

  35. He, R. R.; Yang, P. D. Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol. 2006, 1, 42–46.

    Article  Google Scholar 

  36. Reck, K.; Richter, J.; Hansen, O.; Thomsen, E. V. Piezoresistive effect in top-down fabricated silicon nanowires. MEMS 2008: 21st IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest 2008, 717–720.

    Chapter  Google Scholar 

  37. Ivanov, T.; Gotszalk, T.; Sulzbach, T.; Rangelow, I. W. Quantum size aspects of the piezoresistive effect in ultra thin piezoresistors. Ultramicroscopy 2003, 97, 377–384.

    Article  Google Scholar 

  38. Hosseinzadegan, H.; Todd, C.; Lal, A.; Pandey, M.; Levendorf, M.; Park, J. Graphene has ultra high piezoresistive gauge factor. 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS) 2012.

    Google Scholar 

  39. Li, W. Y.; Cheng, F. Y.; Tao, Z. L.; Chen, J. Vapor-transportation preparation and reversible lithium intercalation/deintercalation of α-MoO3 microrods. J. Phys. Chem. B 2006, 110, 119–124.

    Article  Google Scholar 

  40. Mai, L. Q.; Yang, F.; Zhao, Y. L.; Xu, X.; Xu, L.; Hu, B.; Luo, Y. Z.; Liu, H. Y. Molybdenum oxide nanowires: Synthesis and properties. Mater. Today 2011, 14, 346–353.

    Article  Google Scholar 

  41. Kolmakov, A.; Moskovits, M. Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu. Rev. Mater. Res. 2004, 34, 151–180.

    Article  Google Scholar 

  42. Ressler, T.; Wienold, J.; Jentoft, R. E.; Neisius, T. Bulk structural investigation of the reduction of MoO3 with propene and the oxidation of MoO2 with oxygen. J. Catal. 2002, 210, 67–83.

    Article  Google Scholar 

  43. Singh, P.; Park, W. T.; Miao, J. M.; Shao, L. C.; Kotlanka, R. K.; Kwong, D. L. Tunable piezoresistance and noise in gate-all-around nanowire field-effect-transistor. Appl. Phys. Lett. 2012, 100.

    Google Scholar 

  44. Singh, P.; Miao, J. M.; Pott, V.; Park, W. T.; Kwong, D. L. Piezoresistive sensing performance of junctionless nanowire FET. IEEE Electr. Device L. 2012, 33, 1759–1761.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Lin Wang.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, X., Yang, W., Ding, Y. et al. Piezoresistive effect in MoO3 nanobelts and its application in strain-enhanced oxygen sensors. Nano Res. 7, 180–189 (2014). https://doi.org/10.1007/s12274-013-0385-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0385-8

Keywords

Navigation