Skip to main content
Log in

Thorium/uranium mixed oxide nanocrystals: Synthesis, structural characterization and magnetic properties

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

One of the primary aims of the actinide community within nanoscience is to develop a good understanding similar to what is currently the case for stable elements. As a consequence, efficient, reliable and versatile synthesis techniques dedicated to the formation of new actinide-based nano-objects (e.g. nanocrystals) are necessary. Hence, a “library” dedicated to the preparation of various actinidebased nanoscale building blocks is currently being developed. Nanoscale building blocks with tunable sizes, shapes and compositions are of prime importance. So far, the non-aqueous synthesis method in highly coordinating organic media is the only approach which has demonstrated the capability to provide size and shape control of actinide-based nanocrystals (both for thorium and uranium, and recently extended to neptunium and plutonium). In this paper, we demonstrate that the non-aqueous approach is also well adapted to control the chemical composition of the nanocrystals obtained when mixing two different actinides. Indeed, the controlled hot co-injection of thorium acetylacetonate and uranyl acetate (together with additional capping agents) into benzyl ether can be used to synthesize thorium/uranium mixed oxide nanocrystals covering the full compositional spectrum. Additionally, we found that both size and shape are modified as a function of the thorium:uranium ratio. Finally, the magnetic properties of the different thorium/uranium mixed oxide nanocrystals were investigated. Contrary to several reports, we did not observe any ferromagnetic behavior. As a consequence, ferromagnetism cannot be described as a universal feature of nanocrystals of non-magnetic oxides as recently claimed in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hodes, G. When small is different: Some recent advances in concepts and applications of nanoscale phenomena. Adv. Mater. 2007, 19, 639-655.

    Google Scholar 

  2. El-Sayed, M. A. Small is different: Shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc. Chem. Res. 2004, 37, 326-333.

    Google Scholar 

  3. Alivisatos, A. P. Nanocrystals: Building blocks for modern materials design. Endeavour 1997, 21, 56-60.

  4. Goesmann, H.; Feldmann, C. Nanoparticulate functional materials. Angew. Chem., Int. Ed. 2010, 49, 1362-1395.

    Google Scholar 

  5. Peng, X. An essay on synthetic chemistry of colloidal nanocrystals. Nano Res. 2009, 2, 425-447.

    Google Scholar 

  6. Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389-458.

    Google Scholar 

  7. Semonin, O. E.; Luther, J. M.; Beard, M. C. Quantum dots for next-generation photovoltaics. Mater. Today 2012, 15, 508-515.

    Google Scholar 

  8. Lohse, S. E.; Murphy, C. J. Applications of colloidal inorganic nanoparticles: From medicine to energy. J. Am. Chem. Soc. 2012, 134, 15607-15620.

    Google Scholar 

  9. Lee, D. C.; Smith, D. K.; Heitsch, A. T.; Korgel, B. A. Colloidal magnetic nanocrystals: Synthesis, properties and applications. Annu. Rep. Prog. Chem. C 2007, 103, 351-402.

    Google Scholar 

  10. Reddy, L. H.; Arias, J. L.; Nicolas, J.; Couvreur, P. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 2012, 112, 5818-5878.

    Google Scholar 

  11. Wang, X.; Yang, L.; Chen, Z.; Shin, D. M. Application of nanotechnology in cancer therapy and imaging. CA Cancer J. Clin. 2008, 58, 97-110.

    Google Scholar 

  12. Bouzigues, C.; Gacoin, T.; Alexandrou, A. Biological applications of rare-earth based nanoparticles. ACS Nano 2011, 5, 8488-8505.

    Google Scholar 

  13. Kwon, S. G.; Hyeon, T. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Acc. Chem. Res. 2008, 41, 1696-1709.

    Google Scholar 

  14. Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T. Synthesis of monodisperse spherical nanocrystals. Angew. Chem., Int. Ed. 2007, 46, 4630-4660.

    Google Scholar 

  15. Rao, C. N. R.; Vivekchand, S. R. C.; Biswasa, K.; Govindaraja, A. Synthesis of inorganic nanomaterials. Dalton Trans. 2007, 3728-3749.

  16. Jun, Y. W.; Choi, J. S.; Cheon, J. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew. Chem., Int. Ed. 2006, 45, 3414-3439.

    Google Scholar 

  17. Jun, Y. W.; Lee, J. H.; Choi, J. S.; Cheon, J. Symmetry-controlled colloidal nanocrystals: Nonhydrolytic chemical synthesis and shape determining parameters. J. Phys. Chem. B 2005, 109, 14795-14806.

    Google Scholar 

  18. Dong, A.; Chen, J.; Vora, P. M.; Kikkawa, J. M.; Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 2010, 466, 474-477.

    Google Scholar 

  19. Rogach, A. L.; Talapin, D. V.; Shevchenko, E. V.; Kornowski, A.; Haase, M.; Weller, H. Organization of matter on different size scales: Monodisperse nanocrystals and their superstructures. Adv. Funct. Mater. 2002, 12, 653-664.

    Google Scholar 

  20. Levchenko, T. I.; Kübel, C.; Huang, Y.; Corrigan, J. F. From molecule to materials: Crystalline superlattices of nanoscopic CdS clusters. Chem. Eur. J. 2011, 17, 14394-14398.

    Google Scholar 

  21. Buonsanti, R.; Milliron, D. J. Chemistry of doped colloidal nanocrystals. Chem. Mater. 2013, 25, 1305-1317.

    Google Scholar 

  22. Norris, D. J.; Efros, A. L.; Erwin, S. C. Doped nanocrystals. Science 2008, 319, 1776-1779.

  23. Bryan, J. D.; Gamelin, D. R. Doped semiconductor nanocrystals: Synthesis, characterization, physical. properties, and applications. Prog. Inorg. Chem. 2005, 54, 47-126.

    Google Scholar 

  24. Erwin, S. C.; Zu, L.; Haftel, M. I.; Efros, A. L.; Kennedy, T. A.; Norris, D. J. Doping semiconductor nanocrystals. Nature 2005, 436, 91-94.

    Google Scholar 

  25. Shi, W.-Q.; Yuan, L. Y.; Li, Z. J.; Lan, J. H.; Zhao, Y. L.; Chai, Z.-F. Nanomaterials and nanotechnologies in nuclear energy chemistry. Radiochim. Acta 2012, 100, 727-736.

    Google Scholar 

  26. Tsivadze, A. Y.; Ionova, G. V.; Mikhalko, V. K. Nanochemistry and supramolecular chemistry of actinides and lanthanides: Problems and prospects. Prot. Met. Phys. Chem. Surf. 2010, 46, 149-169.

    Google Scholar 

  27. Wilson, R. E.; Skanthakumar, S.; Soderholm, L. Separation of plutonium oxide nanoparticles and colloids. Angew. Chem., Int. Ed. 2011, 50, 11234-11237.

    Google Scholar 

  28. Biswas, B.; Mougel, V.; Pécaut, J.; Mazzanti, M. Base-driven assembly of large uranium oxo/hydroxo clusters. Angew. Chem., Int. Ed. 2011, 50, 5745-5748.

    Google Scholar 

  29. Ling, J.; Qiu, J.; Sigmon, G. E.; Ward, M.; Szymanowski, J. E. S.; Burns, P. C. Uranium pyrophosphate/methylenediphosphonate polyoxometalate cage clusters. J. Am. Chem. Soc. 2010, 132, 13395-13402.

    Google Scholar 

  30. Soderholm, L.; Almond, P. M.; Skanthakumar, S.; Wilson, R. E.; Burns, P. C. The structure of the plutonium oxide nanocluster [Pu38O 56Cl54(H2O)8]14. Angew. Chem., Int. Ed. 2008, 47, 298–302.

    Article  Google Scholar 

  31. Burns, P. C.; Kubatko, K. A.; Sigmon, G.; Fryer, B. J.; Gagnon, J. E.; Antonio, M. R.; Soderholm, L. Actinyl peroxide nanospheres. Angew. Chem., Int. Ed. 2005, 44, 2135-2139.

    Google Scholar 

  32. Rousseau, G.; Fattahi, M.; Grambow, B.; Desgranges, L.; Boucher, F.; Ouvrard, G.; Millot, N.; Niepce, J. C. Synthesis and characterization of nanometric powders of UO2+x , (Th,U)O2+x and (La,U)O2+x . J. Solid State Chem. 2009, 182, 2591–2597.

    Article  Google Scholar 

  33. Wang, Q.; Li, G. D.; Xu, S.; Li, J. X.; Chen, J. S. Synthesis of uranium oxide nanoparticles and their catalytic performance for benzyl alcohol conversion to benzaldehyde. J. Mater. Chem. 2008, 18, 1146–1152.

    Article  Google Scholar 

  34. Kumar, D.; Dey, G. K.; Gupta, N. M. Nanoparticles of uranium oxide occluded in MCM-41 silica host: Influence of synthesis condition on the size and the chemisorption behavior. Phys. Chem. Chem. Phys. 2003, 5, 5477-5484.

    Google Scholar 

  35. Zhang, Z. T.; Konduru, M.; Dai, S.; Overbury, S. H. Uniform formation of uranium oxide nanocrystals inside ordered mesoporous hosts and their potential applications as oxidative catalysts. Chem. Commun. 2002, 2406-2407.

  36. Wu, H. M.; Yang, Y. G.; Cao, Y. C. Synthesis of colloidal uranium-dioxide nanocrystals. J. Am. Chem. Soc. 2006, 128, 16522-16523.

    Google Scholar 

  37. Hudry, D.; Apostolidis, C.; Walter, O.; Gouder, T.; Courtois, E.; Kübel, C.; Meyer, D. Non-aqueous synthesis of isotropic and anisotropic actinide oxide nanocrystals. Chem. Eur. J. 2012, 18, 8283-8287.

    Google Scholar 

  38. Hudry, D.; Apostolidis, C.; Walter, O.; Gouder, T.; Janssen, A.; Courtois, E.; Kübel, C.; Meyer, D. Synthesis of transuranium-based nanocrystals via the thermal decomposition of actinyl nitrates. RSC Adv. 2013, 3, 18271-18274.

    Google Scholar 

  39. Novikov, A. P.; Kalmykov, S. N.; Utsunomiya, S.; Ewing, R. C.; Horreard, F. O.; Merkulov, A.; Clark, S. B.; Tkachev, V. V.; Myasoedov, B. F. Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia. Science 2006, 314, 638-641.

    Google Scholar 

  40. Kersting, A. B.; Efurd, D. W.; Finnegan, D. L.; Rokop, D. J.; Smith, D. K.; Thompson, J. L. Migration of plutonium in ground water at the Nevada Test Site. Nature 1999, 397, 56-59.

    Google Scholar 

  41. Nenoff, T. M.; Jacobs, B. W.; Robinson, D. B.; Provencio, P. P.; Huang, J.; Ferreira, S.; Hanson, D. J. Synthesis and low temperature in situ sintering of uranium oxide nanoparticles. Chem. Mater. 2011, 23, 5185-5190.

    Google Scholar 

  42. McLaughlin, M. F.; Woodward, J.; Boll, R. A.; Wall, J. S.; Rondinone, A. J.; Kennel, S. J.; Mirzadeh, S.; Robertson, J. D. Gold coated lanthanide phosphate nanoparticles for targeted alpha generator radiotherapy. PLoS One 2013, 8, e54531.

    Google Scholar 

  43. Kim, Y. S.; Brechbiel, M. W. An overview of targeted alpha therapy. Tumor Biol. 2012, 33, 573-590.

    Google Scholar 

  44. Durakiewicz, T.; Joyce, J. J.; Wills, J. M.; Batista, C. D. Notes on the dual nature of 5f electrons. J. Phys. Soc. Jpn. 2006, 75, 39-40.

    Google Scholar 

  45. Lander, G. H. Physics—Sensing electrons on the edge. Science 2003, 301, 1057-1058.

    Google Scholar 

  46. Kwon, S. G.; Hyeon, T. Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 2011, 7, 2685-2702.

    Google Scholar 

  47. Donega, C. D.; Liljeroth, P.; Vanmaekelbergh, D. Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small 2005, 1, 1152-1162.

    Google Scholar 

  48. Sundaresan, A.; Rao, C. N. R. Ferromagnetism as a universal feature of inorganic nanoparticles. Nano Today 2009, 4, 96-106.

    Google Scholar 

  49. Sundaresan, A.; Bhargavi, R.; Rangarajan, N.; Siddesh, U.; Rao, C. N. R. Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B 2006, 74, 161306.

    Google Scholar 

  50. Hudry, D.; Apostolidis, C.; Walter, O.; Gouder, T.; Courtois, E.; Kübel, C.; Meyer, D. Controlled synthesis of thorium and uranium oxide nanocrystals. Chem. Eur. J. 2013, 19, 5297-5305.

    Google Scholar 

  51. Reiss, P.; Protière, M.; Li, L. Core/shell semiconductor nanocrystals. Small 2009, 5, 154-168.

    Google Scholar 

  52. Cheary, R. W.; Coelho, A. A. Axial divergence in a conventional X-ray powder diffractometer. I. Theoretical foundations. J. Appl. Crystallogr. 1998, 31, 851-861.

    Google Scholar 

  53. Narayanaswamy, A.; Xu, H. F.; Pradhan, N.; Kim, M.; Peng, X. G. Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: Hydrolysis and alcoholysis vs. pyrolysis. J. Am. Chem. Soc. 2006, 128, 10310-10319.

    Google Scholar 

  54. Yang, Y. F.; Jin, Y. Z.; He, H. P.; Wang, Q. L.; Tu, Y.; Lu, H. M.; Ye, Z. Z. Dopant-induced shape evolution of colloidal nanocrystals: The case of zinc oxide. J. Am. Chem. Soc. 2010, 132, 13381-13394.

    Google Scholar 

  55. Slowinski, E.; Elliott, N. Lattice constants and magnetic susceptibilities of solid solutions of uranium and thorium dioxide. Acta Cryst. 1952, 5, 768-770.

    Google Scholar 

  56. Sundaresan, A.; Rao, C. N. R. Implications and consequences of ferromagnetism universally exhibited by inorganic nanoparticles. Solid State Commun. 2009, 149, 1197-1200.

    Google Scholar 

  57. Coey, J. M. D. Dilute magnetic oxides. Curr. Opin. Solid State Mater. Sci. 2006, 10, 83-92.

    Google Scholar 

  58. Yamamoto, Y.; Miura, T.; Suzuki, M.; Kawamura, N.; Miyagawa, H.; Nakamura, T.; Kobayashi, K.; Teranishi, T.; Hori, H. Direct observation of ferromagnetic spin polarization in gold nanoparticles. Phys. Rev. Lett. 2004, 93, 116801.

    Google Scholar 

  59. Das Pemmaraju, C.; Sanvito, S. Ferromagnetism driven by intrinsic point defects in HfO2. Phys. Rev. Lett. 2005, 94, 217205.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Damien Hudry or Jean-Christophe Griveau.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hudry, D., Griveau, JC., Apostolidis, C. et al. Thorium/uranium mixed oxide nanocrystals: Synthesis, structural characterization and magnetic properties. Nano Res. 7, 119–131 (2014). https://doi.org/10.1007/s12274-013-0379-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0379-6

Keywords

Navigation