Skip to main content
Log in

Spin-resolved self-doping tunes the intrinsic half-metallicity of AlN nanoribbons

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We present a first-principles theoretical study of electric field-and straincontrolled intrinsic half-metallic properties of zigzagged aluminium nitride (AlN) nanoribbons. We show that the half-metallic property of AlN ribbons can undergo a transition into fully-metallic or semiconducting behavior with application of an electric field or uniaxial strain. An external transverse electric field induces a full charge screening that renders the material semiconducting. In contrast, as uniaxial strain varies from compressive to tensile, a spin-resolved selective self-doping increases the half-metallic character of the ribbons. The relevant strain-induced changes in electronic properties arise from band structure modifications at the Fermi level as a consequence of a spin-polarized charge transfer between p-orbitals of the N and Al edge atoms in a spin-resolved self-doping process. This band structure tunability indicates the possibility of designing magnetic nanoribbons with tunable electronic structure by deriving edge states from elements with sufficiently different localization properties. Finite temperature molecular dynamics reveal a thermally stable half-metallic nanoribbon up to room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; von Molnár, S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M. Spintronics: A spin-based electronics vision for the future. Science 2001, 294, 1488–1495.

    Article  Google Scholar 

  2. Heusler, O. Kristallstruktur und ferromagnetismus der mangan-aluminium-kupferlegierungen. Ann. Phys. 1934, 411, 155–201.

    Article  Google Scholar 

  3. de Groot, R. A.; Mueller, F. M.; vanEngen, P. G.; Buschow, K. H. J. New class of materials: Half-metallic ferromagnets. Phys. Rev. Lett. 1983, 50, 2024–2027.

    Article  Google Scholar 

  4. Dolui, K.; Pemmaraju, C. D.; Sanvito, S. Electric field effects on armchair MoS2 nanoribbons. ACS Nano 2012, 6, 4823–4834.

    Article  Google Scholar 

  5. Du, A. J.; Zhu, Z. H.; Chen, Y.; Lu, G. Q.; Smith, S. C. First principle studies of zigzag AlN nanoribbon. Chem. Phys. Lett. 2009, 469, 183–185.

    Article  Google Scholar 

  6. Son, Y.-W.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349.

    Article  Google Scholar 

  7. Hod, O.; Barone, V.; Peralta, J. E.; Scuseria, G. E. Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons. Nano Lett. 2007, 7, 2295–2299.

    Article  Google Scholar 

  8. Qi, J. S.; Qian, X. F.; Qi, L.; Feng, J.; Shi, D. N.; Li, J. Strainengineering of band gaps in piezoelectric boron nitride nanoribbons. Nano Lett. 2012, 12, 1224–1228.

    Article  Google Scholar 

  9. Piazza, G.; Felmetsger, V.; Muralt, P.; Olsson III, R. H.; Ruby, R. Piezoelectric aluminum nitride thin films for microelectromechanical systems. MRS Bull. 2012, 37, 1051–1061.

    Article  Google Scholar 

  10. O’Leary, S. K.; Foutz, B. E.; Shur, M. S.; Eastman, L. F. Steady-state and transient electron transport within the III–V nitride semiconductors, GaN, AlN, and InN: A review. J. Mater. Sci.: Mater. El. 2006, 17, 87–126.

    Google Scholar 

  11. Balasubramanian, C.; Bellucci, S.; Castrucci, P.; De Crescenzi, M.; Bhoraskar, S. V. Scanning tunneling microscopy observation of coiled aluminum nitride nanotubes. Chem. Phys. Lett. 2004, 383, 188–191.

    Article  Google Scholar 

  12. Zhukovskii, Y. F.; Popov, A. I. Balasubramanian, C.; Bellucci, S. J. Phys.: Condens. Matter 2006, 18, 2045.

    Google Scholar 

  13. Xie, T.; Lin, Y.; Wu, G. S.; Yuan, X. Y.; Jiang, Z.; Ye, C. H.; Meng, G. W.; Zhang, L. D. AlN serrated nanoribbons synthesized by chloride assisted vapor-solid route. Inorg. Chem. Commun. 2004, 7, 545–547.

    Article  Google Scholar 

  14. Moon, E. J.; Rondinelli, J. M.; Prasai, N.; Gray, B. A.; Kareev, M.; Chakhalian, J.; Cohn, J. L. Strain-controlled band engineering and self-doping in ultrathin LaNiO3 films. Phys. Rev. B 2012, 85, 121106–121109.

    Article  Google Scholar 

  15. Ordejón, P.; Artacho, E.; Soler, J. M. Self-consistent order-N densisty-functional calculations for very large systems. Phys. Rev. B 1996, 53, 10441–10444.

    Article  Google Scholar 

  16. Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 2002, 14, 2745–2779.

    Google Scholar 

  17. Clement, M.; Vergara, L.; Sangrador, J.; Iborra, E.; Sanz-Hervás, A. SAW characteristics of AlN films sputtered on silicon substrates. Ultrasonics 2004, 42, 403–407.

    Article  Google Scholar 

  18. Kresse G.; Furthmüller, J. Efficient iterative scheme for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  19. Kresse G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  Google Scholar 

  20. Liu, Q. Q.; Yu, X. H.; Wang, X. C.; Deng, Z.; Lv, Y. X.; Zhu, J. L.; Zhang, S. J.; Liu, H. Z.; Yang, W. G.; Wang, L.; et al. Pressure-induced isostructural phase transition and correlation of FeAs coordination with the superconducting properties of 111-type Na1−x FeAs. J. Am. Chem. Soc. 2011, 133, 7892–7896.

    Article  Google Scholar 

  21. He, K. L.; Poole, C.; Mak, K. F.; Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 2013, 13, 2931–2936.

    Article  Google Scholar 

  22. Wang, G.; Zhu, C. R.; Liu, B. L.; Marie, X.; Feng, Q. X.; Wu, X. X.; Fan, H.; Tan, P. H.; Amand, T.; Urbaszek, B. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys. Rev. B 2013, 88, 121301–121305.

    Article  Google Scholar 

  23. Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund R. F.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626–3630.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alejandro Lopez-Bezanilla or P. Ganesh.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopez-Bezanilla, A., Ganesh, P., Kent, P.R.C. et al. Spin-resolved self-doping tunes the intrinsic half-metallicity of AlN nanoribbons. Nano Res. 7, 63–70 (2014). https://doi.org/10.1007/s12274-013-0371-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0371-1

Keywords

Navigation