Skip to main content
Log in

Enzyme-directed pH-responsive exfoliation and dispersion of graphene and its decoration by gold nanoparticles for use as a hybrid catalyst

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A non-destructive, safe and practical strategy to produce high quality graphene in high yield is urgently required, since this would pave the way for a wide range of applications of graphene in the future. Here we present a pH-responsive water-dispersible method for the exfoliation and functionalization of graphene by using lysozyme. The pH-responsive dispersion of graphene may be useful for the reversible assembly of multicomponent/multifunctional nanohybrid materials and nanoscale electronic devices. More importantly, composites can be easily constructed through the interactions between disulphide groups in lysozyme and gold nanoparticles (AuNPs). The resulting graphene-AuNPs composites show excellent catalytic activity towards reduction of o-nitroaniline by NaBH4. Since lysozyme is low cost and has antibacterial properties, and has been widely used in food preservation, medicine and the pharmaceutical industry, our approach may open a new scalable route for the manufacture of high-quality, nondestructive graphene for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  CAS  Google Scholar 

  2. Ma, X. X.; Tao, H. Q.; Yang, K.; Feng, L. Z.; Cheng, L.; Shi, X. Z.; Li, Y. G.; Guo, L.; Liu, Z. A functionalized graphene graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res. 2012, 5, 199–212.

    Article  CAS  Google Scholar 

  3. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  4. Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N.; et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.

    Article  CAS  Google Scholar 

  5. Ruoff, R. Graphene: Calling all chemists. Nat. Nanotechnol. 2008, 3, 10–11.

    Article  CAS  Google Scholar 

  6. Chakraborty, S.; Guo, W. H.; Hauge, R. H.; Billups, W. E. Reductive alkylation of fluorinated graphite. Chem. Mater. 2008, 20, 3134–3136.

    Article  CAS  Google Scholar 

  7. Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud’homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 2006, 110, 8535–8539.

    Article  CAS  Google Scholar 

  8. Lomeda, J. R.; Doyle, C. D.; Kosynkin, D. V.; Hwang, W. F.; Tour, J. M. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 2008, 130, 16201–16206.

    Article  CAS  Google Scholar 

  9. Qian, W.; Hao, R.; Hou, Y. L.; Tian, Y.; Shen, C. M.; Gao, H. J.; Liang, X. L. Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality. Nano Res. 2009, 2, 706–712.

    Article  CAS  Google Scholar 

  10. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. B. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.

    Article  CAS  Google Scholar 

  11. Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z. M.; McGovern, I. T.; et al. Liquid phase production of graphene by exfoliation of graphite in surfactant water solutions. J. Am. Chem. Soc. 2009, 131, 3611–3620.

    Article  CAS  Google Scholar 

  12. Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

    Article  CAS  Google Scholar 

  13. Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.

    Google Scholar 

  14. Bourlinos, A. B.; Georgakilas, V.; Zboril, R.; Steriotis, T. A.; Stubos, A. K. Liquid-phase exfoliation of graphite towards solubilized graphenes. Small 2009, 5, 1841–1845.

    Article  CAS  Google Scholar 

  15. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’ko, Y. K.; et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.

    Article  CAS  Google Scholar 

  16. Hamilton, C. E.; Lomeda, J. R.; Sun, Z. Z.; Tour, J. M.; Barron, A. R. High-yield organic dispersions of unfunctionalized graphene. Nano Lett. 2009, 9, 3460–3462.

    Article  CAS  Google Scholar 

  17. Janowska, I.; Chizari, K.; Ersen, O.; Zafeiratos, S.; Soubane, D.; Da Costa, V.; Speisser, V.; Boeglin, C.; Houllé, M.; Bégin, D.; et al. Microwave synthesis of large few-layer graphene sheets in aqueous solution of ammonia. Nano Res. 2010, 3, 126–137.

    Article  CAS  Google Scholar 

  18. Lotya, M.; King, P. J.; Khan, U.; De S.; Coleman, J. N. High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 2010, 4, 3155–3162.

    Article  CAS  Google Scholar 

  19. De, S.; King, P. J.; Lotya, M.; O’Neill, A.; Doherty, E. M.; Hernandez, Y.; Duesberg, G. S.; Coleman, J. N. Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small 2010, 6, 458–464.

    Article  CAS  Google Scholar 

  20. Behabtu, N.; Lomeda, J. R.; Green, M. J.; Higginbotham, A. L.; Sinitskii, A.; Kosynkin, D. V.; Tsentalovich, D.; Parra-Vasquez, A. N. G.; Schmidt, J.; Kesselman, E.; et al. Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat. Nanotechnol. 2010, 5, 406–411.

    Article  CAS  Google Scholar 

  21. Zhang, D. D.; Fu, L.; Liao, L.; Liu, N.; Dai, B. Y.; Zhang, C. X. Preparation, characterization, and application of electrochemically functional graphene nanocomposites by one-step liquid-phase exfoliation of natural flake graphite with methylene blue. Nano Res. 2012, 5, 875–887.

    Article  CAS  Google Scholar 

  22. Barone, P. W.; Baik, S.; Heller, D. A.; Strano, M. S. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater. 2005, 4, 86–92.

    Article  CAS  Google Scholar 

  23. Graff, R. A.; Swanson, J. P.; Barone, P. W.; Baik, S.; Heller, D. A.; Strano, M. S. Achieving individual-nanotube dispersion at high loading in single-walled carbon nanotube composites. Adv. Mater. 2005, 17, 980–984.

    Article  CAS  Google Scholar 

  24. Nepal, D.; Geckeler, K. E. pH-sensitive dispersion and debundling of single-walled carbon nanotubes: Lysozyme as a tool. Small 2006, 2, 406–412.

    Article  CAS  Google Scholar 

  25. Blake, C. C. F.; Koenig, D. F.; Mair, G. A.; North, A. C. T.; Phillips, D. C.; Sarma, V. R. Structure of hen egg-white lysozyme: A three-dimensional Fourier synthesis at 2 Å resolution. Nature 1965, 206, 757–761.

    Article  CAS  Google Scholar 

  26. Laaksonen, P.; Kainlauri, M.; Laaksonen, T.; Shchepetov, A.; Jiang, H.; Ahopelto, J.; Linder, M. B. Interfacial engineering by proteins-Exfoliation and functionalization of graphene by hydrophobins. Angew. Chem. Int. Ed. 2010, 49, 4946–4949.

    Article  CAS  Google Scholar 

  27. Yang, J.; Lee, J. Y.; Too, H. P.; Chow, G. M.; Gan. L. M. Single stranded DNA stabilization and assembly of Au nanoparticles of different sizes. Chem. Phys. 2006, 323, 304–312.

    Article  CAS  Google Scholar 

  28. Qu, K. G.; Wu, L.; Ren, J. S.; Qu. X. G. Natural DNA-modified graphene/Pd nanoparticles as highly active catalyst for formic acid electro-oxidation and for the Suzuki reaction. ACS Appl. Mater. Interfaces 2012, 4, 5001–5009.

    Article  CAS  Google Scholar 

  29. Zhao, C.; Qu, K. G.; Song, Y. J.; Ren, J. S.; Qu. X. G. A universal, label-free, and sensitive optical enzyme-sensing system for nuclease and methyltransferase activity based on light scattering of carbon nanotubes. Adv. Funct. Mater. 2011, 21, 583–590.

    Article  CAS  Google Scholar 

  30. Qu, K. G.; Ren, J. S.; Qu. X. G. pH-responsive, DNA-directed reversible assembly of graphene oxide. Mol. BioSyst. 2011, 7, 2681–2687.

    Article  CAS  Google Scholar 

  31. Juárez, J.; Cambón, A.; Goy-López, S.; Topete, A.; Taboada, P.; Mosquera. V. Obtention of metallic nanowires by protein biotemplating and their catalytic application. J. Phys. Chem. Lett. 2010, 1, 2680–2687.

    Article  Google Scholar 

  32. Zhu, C. H.; Hai, Z. B.; Cui, C. H.; Li, H. H.; Chen, J. F.; Yu. S. H. In situ controlled synthesis of thermosensitive poly(N-isopropylacrylamide)/Au nanocomposite hydrogels by gamma radiation for catalytic application. Small 2012, 8, 930–936.

    Article  CAS  Google Scholar 

  33. Katsukis, G.; Malig, J.; Schulz-Drost, C.; Leubner, S.; Jux, N.; Guldi, D. M. Toward combining graphene and QDs assembling CdTe QDs to exfoliated graphite and nanographene in water. ACS Nano 2012, 6, 1915–1924.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Qu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, K., Wu, L., Ren, J. et al. Enzyme-directed pH-responsive exfoliation and dispersion of graphene and its decoration by gold nanoparticles for use as a hybrid catalyst. Nano Res. 6, 693–702 (2013). https://doi.org/10.1007/s12274-013-0345-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0345-3

Keywords

Navigation