Effect of anchor and functional groups in functionalized graphene devices

Abstract

The electrical properties of chemically derived graphene and graphene grown by chemical vapor deposition (CVD), until now, have been inferior to those of mechanically exfoliated graphene. However, because graphene is easier to produce in large quantities through CVD or growth from solid carbon sources, it has a higher potential for use in future electronics applications. Generally, modifications to the pristine lattice structure of graphene tend to adversely affect the electrical properties by shifting the doping level and changing the conductivity and the mobility. Here we show that a small degree of graphene surface functionalization, using diazonium salts with electron-withdrawing and electron-donating functional groups, is sufficient to predominantly induce p-type doping, undiminished mobility, and higher conductivity at the neutrality point. Molecules without a diazonium anchor group desorb easily and do not have a significant effect on the electronic properties of graphene devices. We further demonstrate the variability between identically fabricated pristine devices, thereby underscoring the caution needed when characterizing graphene device behaviors lest conclusions be drawn based on singular extremes.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Chen, J. H.; Cullen, W. G.; Jang, C.; Fuhrer, M. S.; Williams, E. D. Defect scattering in graphene. Phys. Rev. Lett. 2009, 102, 236805.

    Article  Google Scholar 

  2. [2]

    Levesque, P. L.; Sabri, S. S.; Aguirre, C. M.; Guillemette, J.; Siaj, M.; Desjardins, P.; Szkopek, T.; Martel, R. Probing charge transfer at surfaces using graphene transistors. Nano Lett. 2011, 11, 132–137.

    Article  CAS  Google Scholar 

  3. [3]

    Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.

    Article  CAS  Google Scholar 

  4. [4]

    Chen, J. H.; Jang, C.; Adam, S.; Fuhrer, M. S.; Williams, E. D.; Ishigami, M. Charged-impurity scattering in graphene. Nat. Phys. 2008, 4, 377–381.

    Article  CAS  Google Scholar 

  5. [5]

    Giljie, S.; Han, S.; Wang, M.; Wang, K. L.; Kaner, R. B. A chemical route to graphene for device applications. Nano Lett. 2007, 7, 3394–3398.

    Article  Google Scholar 

  6. [6]

    Xia, J. L.; Chen, F.; Tedesco, J. L.; Gaskill, D. K.; Myers-Ward, R. L.; Eddy, C. R. Jr.; Ferry, D. K.; Tao, N. J. The Transport and quantum capacitance properties of epitaxial graphene. Appl. Phys. Lett. 2010, 96, 162101.

    Article  Google Scholar 

  7. [7]

    Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E., et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  CAS  Google Scholar 

  8. [8]

    Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

    Article  CAS  Google Scholar 

  9. [9]

    Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191.

    Article  CAS  Google Scholar 

  10. [10]

    Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

    Article  CAS  Google Scholar 

  11. [11]

    Farmer, D. B.; Golizadeh-Mojarad, R.; Perebeinos, V.; Lin, Y. M.; Tulvski, G. S.; Tsang, J. C.; Avouris, P. Chemical doping and electron-hole conduction asymmetry in graphene devices. Nano Lett. 2009, 9, 388–392.

    Article  CAS  Google Scholar 

  12. [12]

    Bekyarova, E.; Itkis, M. E.; Ramesh, P.; Berger, C.; Sprinkle, M.; de Heer, W. A.; Haddon, R. C. Chemical modification of epitaxial graphene: Spontaneous grafting of aryl groups. J. Am. Chem. Soc. 2009, 131, 1336–1337.

    Article  CAS  Google Scholar 

  13. [13]

    Lomeda, J. R.; Doyle, C. D.; Kosynkin, D. V.; Hwang, W.-F.; Tour, J. M. Diazonium functionalization of surfactant-rrapped chemically converted graphene sheets. J. Am. Chem. Soc. 2008, 130, 16201–16206.

    Article  CAS  Google Scholar 

  14. [14]

    Huang, P.; Jing, L.; Zhu, H. R.; Gao, X. Y. Transport properties of diazonium functionalized graphene: Chiral two-dimensional hole gases. J. Phys.: Condens. Matter 2012, 24, 235305.

    Article  Google Scholar 

  15. [15]

    Sun, Z.; Yan, Z.; Yao, J.; Beitler, E.; Zhu, Y.; Tour, J. M. Growth of graphene from solid carbon sources. Nature 2010, 468, 549–552.

    Article  CAS  Google Scholar 

  16. [16]

    Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S., et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

    Article  CAS  Google Scholar 

  17. [17]

    Lin, J.; Zhong, J.; Reiber Kyle, J.; Penchev, M.; Ozkan, M.; Ozkan, C. Molecular absorption and photodesorption in pristine and functionalized large-area graphene layers. Nanotechnology 2011, 22, 355701.

    Article  Google Scholar 

  18. [18]

    Hwang, E. H.; Adam, S.; Sarma, S. D. Carrier transport in two-dimensional graphene layers. Phys. Rev. Lett. 2007, 98, 186806.

    Article  CAS  Google Scholar 

  19. [19]

    Cheng, Z.; Zhou, Q.; Wang, C.; Li, Q.; Wang, C.; Fang, Y. Toward intrinsic graphene surfaces: A systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices. Nano Lett. 2011, 11, 767–771.

    Article  CAS  Google Scholar 

  20. [20]

    Tan, Y.-W.; Zhang, Y.; Bolotin, K.; Zhao, Y.; Adam, S.; Hwang, E. H.; Sarma, S. D.; Stormer, H. L.; Kim, P. Measurement of scattering rate and minimum conductivity in graphene. Phys. Rev. Lett. 2007, 99, 246803.

    Article  Google Scholar 

  21. [21]

    Liang, X.; Sperling, B. A.; Calizo, I.; Cheng, G.; Hacker C. A.; Zhang, Q.; Obeng, Y.; Yan, K.; Peng, H.; Li, Q., et al. Toward clean and crackless transfer of graphene. ACS Nano 2011, 5, 9144–9153.

    Article  Google Scholar 

  22. [22]

    Xia, F.; Perebeinos, V.; Lin, Y.; Wu, Y.; Avouris, P. The origins and limits of metal-graphene junction resistance. Nat. Nanotechnol. 2011, 6, 179–184.

    Article  CAS  Google Scholar 

  23. [23]

    Wang, H.; Wu, Y.; Cong, C.; Shang, J.; Yu, T. Hysteresis of electronic transport in graphene transistors. ACS Nano 2010, 4, 7221–7228.

    Article  CAS  Google Scholar 

  24. [24]

    Rumyantsev, S. L.; Liu, G.; Shur, M. S.; Balandin, A. Observation of the memory steps in graphene at elevated temperatures. Appl. Phys. Lett. 2011, 98, 222107.

    Article  Google Scholar 

  25. [25]

    Worne, J. H.; Gullapalli, H.; Galande, C.; Ajayan, P.; Natelson, D. Local charge transfer doping in suspended graphene nanojunctions. Appl. Phys. Lett. 2012, 100, 023306.

    Article  Google Scholar 

  26. [26]

    Sinitskii, A.; Dimiev, A.; Corley, D. A.; Fursina, A. A.; Kosynkin, D. V.; Tour, J. M. Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 2010, 4, 1949–1954.

    Google Scholar 

  27. [27]

    Dyke, C. A.; Steward, M. P.; Maya, F.; Tour, J. M. Diazonium-based functionalization of carbon nanotubes: XPS and GC-MS analysis and mechanistic implications. Synlett. 2004, 155–160.

  28. [28]

    Bahr, J. L.; Yang, J.; Kosynkin, D. V.; Bronikowski, M. J.; Smalley, R. E.; Tour, J. M. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode. J. Am. Chem. Soc. 2001, 123, 6536–6542.

    Article  CAS  Google Scholar 

  29. [29]

    Laforgue, A.; Addou, T.; Belanger, D. Characterization of the deposition of organic molecules at the surface of gold by the electrochemical reduction of aryldiazonium cations. Langmuir 2005, 21, 6855–6865.

    Article  CAS  Google Scholar 

  30. [30]

    Sun, Z.; Kohama, S.-I.; Zhang, Z.; Lomeda, J. R.; Tour, J. M. Soluble graphene through edge-selective functionalization. Nano Res. 2010, 3, 117–125.

    Article  CAS  Google Scholar 

  31. [31]

    Lim, H.; Lee, J. S.; Shin, H.-J.; Shin, H. S.; Choi, H. C. Spatially resolved spontaneous reactivity of diazonium salt on edge and basal plane of graphene without surfactant and its doping effect. Langmuir 2010, 26, 12278–12284.

    Article  CAS  Google Scholar 

  32. [32]

    Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L. G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1291.

    Article  CAS  Google Scholar 

  33. [33]

    Koehler, F. M.; Jacobsen, A.; Ensslin, K.; Stampfer, C.; Stark, W. J. Selective chemical modification of graphene surfaces: Distinction between single- and bilayer graphene. Small 2010, 6, 1125–1130.

    Article  CAS  Google Scholar 

  34. [34]

    Sharma, R.; Baik, J. H.; Perera, C. J.; Strano, M. S. Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries. Nano Lett. 2010, 10, 398–405.

    Article  CAS  Google Scholar 

  35. [35]

    Niyogi, S.; Bekyarova, E.; Itkis, M. E.; Zhang, H.; Shepperd, K.; Hicks, J.; Sprinkle, M.; Berger, C.; Lau, C. N.; deHeer, W. A., et al. Spectroscopy of covalently functionalized graphene. Nano Lett. 2010, 10, 4061–4066.

    Article  CAS  Google Scholar 

  36. [36]

    Stampfer, C.; Molitor, F.; Graf, D.; Ensslin, K.; Jungen, A.; Hierold, C.; Wirtz, L. Raman imaging of doping domains in graphene on SiO2. Appl. Phys. Lett. 2007, 91, 241907.

    Article  Google Scholar 

  37. [37]

    Huang, P.; Zhu H.; Jing, L.; Zhao, Y.; Gao, X. Graphene covalently binding aryl groups: Conductivity increases rather than decreases. ACS Nano 2011, 5, 7945–7949.

    Article  CAS  Google Scholar 

  38. [38]

    Ho, P.-H.; Yeh, Y.-C.; Wang, D.-Y.; Li, S.-S.; Chen, H.-A.; Chung, Y.-H.; Lin, C.-C.; Wang, W.-H.; Chen, C.-W. Self-encapsulated doping of n-type graphene transistors with extended air stability. ACS Nano 2012, 6, 6215–6221.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to James M. Tour.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pembroke, E., Ruan, G., Sinitskii, A. et al. Effect of anchor and functional groups in functionalized graphene devices. Nano Res. 6, 138–148 (2013). https://doi.org/10.1007/s12274-013-0289-7

Download citation

Keywords

  • chemical vapor deposition
  • graphene
  • diazonium functionalization
  • neutrality point