Nano Research

, Volume 6, Issue 2, pp 99–112 | Cite as

Weak mismatch epitaxy and structural Feedback in graphene growth on copper foil

  • Neil R. WilsonEmail author
  • Alexander J. Marsden
  • Mohammed Saghir
  • Catherine J. Bromley
  • Renald Schaub
  • Giovanni Costantini
  • Thomas W. White
  • Cerianne Partridge
  • Alexei Barinov
  • Pavel Dudin
  • Ana M. Sanchez
  • James J. Mudd
  • Marc Walker
  • Gavin R. Bell
Open Access


Graphene growth by low-pressure chemical vapor deposition on low cost copper foils shows great promise for large scale applications. It is known that the local crystallography of the foil influences the graphene growth rate. Here we find an epitaxial relationship between graphene and copper foil. Interfacial restructuring between graphene and copper drives the formation of (n10) facets on what is otherwise a mostly Cu(100) surface, and the facets in turn influence the graphene orientations from the onset of growth. Angle resolved photoemission shows that the electronic structure of the graphene is decoupled from the copper indicating a weak interaction between them. Despite this, two preferred orientations of graphene are found, ±8° from the Cu[010] direction, creating a non-uniform distribution of graphene grain boundary misorientation angles. Comparison with the model system of graphene growth on single crystal Cu(110) indicates that this orientational alignment is due to mismatch epitaxy. Despite the differences in symmetry the orientation of the graphene is defined by that of the copper. We expect these observations to not only have importance for controlling and understanding the growth process for graphene on copper, but also to have wider implications for the growth of two-dimensional materials on low cost metal substrates.


graphene chemical vapor deposition mismatch epitaxy structural feedback low energy electron diffraction angle resolved photo-emission spectroscopy (ARPES) 

Supplementary material

12274_2013_285_MOESM1_ESM.avi (1.1 mb)
Supplementary material, approximately 1.09 MB.
12274_2013_285_MOESM2_ESM.pdf (1.6 mb)
Supplementary material, approximately 1.56 MB.


  1. [1]
    Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E., et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.CrossRefGoogle Scholar
  2. [2]
    Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y., et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 2011, 469, 389–392.CrossRefGoogle Scholar
  3. [3]
    An, J.; Voelkl, E.; Suk, J. W.; Li, X.; Magnuson, C. W.; Fu, L.; Tiemeijer, P.; Bischoff, M.; Freitag, B.; Popova, E., et al. Domain (grain) boundaries and evidence of “twinlike” structures in chemically vapor deposited grown graphene. ACS Nano 2011, 5, 2433–2439.CrossRefGoogle Scholar
  4. [4]
    Kim, K.; Lee, Z.; Regan, W.; Kisielowski, C.; Crommie, M. F.; Zettl, A. Grain boundary mapping in polycrystalline graphene. ACS Nano 2011, 5, 2142–2146.CrossRefGoogle Scholar
  5. [5]
    Yakobson, B. I.; Ding, F. Observational geology of graphene, at the nanoscale. ACS Nano 2011, 5, 1569–1574.CrossRefGoogle Scholar
  6. [6]
    Yu, Q.; Jauregui, L. A.; Wu, W.; Colby, R.; Tian, J.; Su, Z.; Cao, H.; Liu, Z.; Pandey, D.; Wei, D., et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 2011, 10, 443–449.CrossRefGoogle Scholar
  7. [7]
    Malola, S.; Häkkinen, H.; Koskinen, P. Structural, chemical, and dynamical trends in graphene grain boundaries. Phys. Rev. B 2010, 81, 165447.CrossRefGoogle Scholar
  8. [8]
    Zhang, J.; Zhao, J.; Lu, J. Intrinsic strength and failure behaviors of graphene grain boundaries. ACS Nano 2012, 6, 2704–2711.CrossRefGoogle Scholar
  9. [9]
    Grantab, R.; Shenoy, V. B.; Ruoff, R. S. Anomalous strength characteristics of tilt grain boundaries in graphene. Science 2010, 330, 946–948.CrossRefGoogle Scholar
  10. [10]
    Kumar, S. B.; Guo, J. Strain-induced conductance modulation in graphene grain boundary. Nano Lett. 2012, 12, 1362–1366.CrossRefGoogle Scholar
  11. [11]
    Wintterlin, J.; Bocquet, M. L. Graphene on metal surfaces. Surf. Sci. 2009, 603, 1841–1852.CrossRefGoogle Scholar
  12. [12]
    Robinson, Z. R.; Tyagi, P.; Murray, T. M.; Ventrice, J. C. A.; Chen, S.; Munson, A.; Magnuson, C. W.; Ruoff, R. S. Substrate grain size and orientation of Cu and Cu-Ni foils used for the growth of graphene films. J. Vac. Sci. Technol. A 2012, 30, 011401.CrossRefGoogle Scholar
  13. [13]
    Chen, S.; Cai, W.; Piner, R. D.; Suk, J. W.; Wu, Y.; Ren, Y.; Kang, J.; Ruoff, R. S. Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils. Nano Lett. 2011, 11, 3519–3525.CrossRefGoogle Scholar
  14. [14]
    Ishihara, M.; Koga, Y.; Kim, J.; Tsugawa, K.; Hasegawa, M. Direct evidence of advantage of Cu(111) for graphene synthesis by using Raman mapping and electron backscatter diffraction. Mater. Lett. 2011, 65, 2864–2867.CrossRefGoogle Scholar
  15. [15]
    Wood, J. D.; Schmucker, S. W.; Lyons, A. S.; Pop, E.; Lyding, J. W. Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett. 2011, 11, 4547–4554.CrossRefGoogle Scholar
  16. [16]
    Nie, S.; Wofford, J. M.; Bartelt, N. C.; Dubon, O. D.; McCarty, K. F. Origin of the mosaicity in graphene grown on Cu(111). Phys. Rev. B 2011, 84, 155425.CrossRefGoogle Scholar
  17. [17]
    Zhao, L.; Rim, K. T.; Zhou, H.; He, R.; Heinz, T. F.; Pinczuk, A.; Flynn, G. W.; Pasupathy, A. N. Influence of copper crystal surface on the CVD growth of large area monolayer graphene. Solid State Commun. 2011, 151, 509–513.CrossRefGoogle Scholar
  18. [18]
    Gao, L.; Guest, J. R.; Guisinger, N. P. Epitaxial graphene on Cu(111). Nano Lett. 2010, 10, 3512–3516.CrossRefGoogle Scholar
  19. [19]
    Ogawa, Y.; Hu, B.; Orofeo, C. M.; Tsuji, M.; Ikeda, K.-i.; Mizuno, S.; Hibino, H.; Ago, H. Domain structure and boundary in single-layer graphene grown on Cu(111) and Cu(100) Films. J. Phys. Chem. Lett. 2011, 3, 219–226.CrossRefGoogle Scholar
  20. [20]
    Orofeo, C. M.; Hibino, H.; Kawahara, K.; Ogawa, Y.; Tsuji, M.; Ikeda, K.-I.; Mizuno, S.; Ago, H. Influence of Cu metal on the domain structure and carrier mobility in single-layer graphene. Carbon 2012, 50, 2189–2196.CrossRefGoogle Scholar
  21. [21]
    Wofford, J. M.; Nie, S.; McCarty, K. F.; Bartelt, N. C.; Dubon, O. D. Graphene islands on Cu foils: The interplay between shape, orientation, and defects. Nano Lett. 2010, 10, 4890–4896.CrossRefGoogle Scholar
  22. [22]
    Rasool, H. I.; Song, E. B.; Allen, M. J.; Wassei, J. K.; Kaner, R. B.; Wang, K. L.; Weiller, B. H.; Gimzewski, J. K. Continuity of graphene on polycrystalline copper. Nano Lett. 2010, 11, 251–256.CrossRefGoogle Scholar
  23. [23]
    Zhang, B.; Lee, W. H.; Piner, R.; Kholmanov, I.; Wu, Y.; Li, H.; Ji, H.; Ruoff, R. S. Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils. ACS Nano 2012, 6, 2471–2476.CrossRefGoogle Scholar
  24. [24]
    Lee, C.; Li, Q.; Kalb, W.; Liu, X.-Z.; Berger, H.; Carpick, R. W.; Hone, J. Frictional characteristics of atomically thin sheets. Science 2010, 328, 76–80.CrossRefGoogle Scholar
  25. [25]
    Tian, J.; Cao, H.; Wu, W.; Yu, Q.; Guisinger, N. P.; Chen, Y. P. Graphene induced surface reconstruction of Cu. Nano Lett. 2012, 12, 3893–3899.CrossRefGoogle Scholar
  26. [26]
    Khomyakov, P. A.; Giovannetti, G.; Rusu, P. C.; Brocks, G.; van den Brink, J.; Kelly, P. J. First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B 2009, 79, 195425.CrossRefGoogle Scholar
  27. [27]
    Walter, A. L.; Nie, S.; Bostwick, A.; Kim, K. S.; Moreschini, L.; Chang, Y. J.; Innocenti, D.; Horn, K.; McCarty, K. F.; Rotenberg, E. Electronic structure of graphene on single-crystal copper substrates. Phys. Rev. B 2011, 84, 195443.CrossRefGoogle Scholar
  28. [28]
    Gartland, P. O.; Berge, S.; Slagsvold, B. J. Photoelectric work function of a copper single crystal for the (100), (110), (111), and (112) faces. Phys. Rev. Lett. 1972, 28, 738–739.CrossRefGoogle Scholar
  29. [29]
    Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.CrossRefGoogle Scholar
  30. [30]
    Quigley, D.; Rodger, P. M.; Freeman, C. L.; Harding, J. H.; Duffy, D. M. Metadynamics simulations of calcite crystallization on self-assembled monolayers. J. Chem. Phys. 2009, 131, 094703.CrossRefGoogle Scholar
  31. [31]
    Fölsch, S.; Helms, A.; Zöphel, S.; Repp, J.; Meyer, G.; Rieder, K. H. Self-organized patterning of an insulator-on-metal system by surface faceting and selective growth: NaCl/Cu(211). Phys. Rev. Lett. 2000, 84, 123–126.CrossRefGoogle Scholar
  32. [32]
    Murray, P. W.; Pedersen, M. Ø.; Lægsgaard, E.; Stensgaard, I.; Besenbacher, F. Growth of C60 on Cu(110) and Ni(110) surfaces: C60-induced interfacial roughening. Phys. Rev. B 1997, 55, 9360–9363.CrossRefGoogle Scholar
  33. [33]
    Gao, J.; Yip, J.; Zhao, J.; Yakobson, B. I.; Ding, F. Graphene nucleation on transition metal surface: Structure transformation and role of the metal step edge. J. Am. Chem. Soc. 2011, 133, 5009–5015.CrossRefGoogle Scholar
  34. [34]
    Dudin, P.; Lacovig, P.; Fava, C.; Nicolini, E.; Bianco, A.; Cautero, G.; Barinov, A. Angle-resolved photoemission spectroscopy and imaging with a submicrometre probe at the spectromicroscopy-3.2l beamline of Elettra. J. Synchotron Radiat. 2010, 17, 445–450.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Neil R. Wilson
    • 1
    Email author
  • Alexander J. Marsden
    • 1
  • Mohammed Saghir
    • 1
  • Catherine J. Bromley
    • 2
  • Renald Schaub
    • 2
  • Giovanni Costantini
    • 3
  • Thomas W. White
    • 3
  • Cerianne Partridge
    • 3
  • Alexei Barinov
    • 4
  • Pavel Dudin
    • 4
  • Ana M. Sanchez
    • 1
  • James J. Mudd
    • 1
  • Marc Walker
    • 1
  • Gavin R. Bell
    • 1
  1. 1.Department of PhysicsUniversity of WarwickCoventryUK
  2. 2.EaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsUK
  3. 3.Department of ChemistryUniversity of WarwickCoventryUK
  4. 4.Sincrotrone Trieste S.C.p.A.Basovizza, TriesteItaly

Personalised recommendations