Skip to main content
Log in

Vertical oxide nanotubes connected by subsurface microchannels

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We describe the fabrication of arrays of oxide nanotubes using a combination of bottom up and top down nanofabrication. The nanotubes are made from epitaxially grown semiconductor nanowires that are covered with an oxide layer using atomic layer deposition. The tips of the oxide-covered nanowires are removed by argon sputtering and the exposed semiconductor core is then selectively etched, leaving a hollow oxide tube. We show that it is possible to create fluidic connections to the nanotubes by a combination of electron beam lithography to precisely define the nanotube positions and controlled wet under-etching. DNA transport is demonstrated in the microchannel. Cells were successfully cultured on the nanotube arrays, demonstrating compatibility with cell-biological applications. Our device opens up the possibility of injecting molecules into cells with both spatial and temporal control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prinz, C.; Hallstrom, W.; Martensson, T.; Samuelson, L.; Montelius, L.; Kanje, M. Axonal guidance on patterned free-standing nanowire surfaces. Nanotechnology 2008, 19, 345101.

    Article  Google Scholar 

  2. Hallstrom, W.; Prinz, C. N.; Suyatin, D.; Samuelson, L.; Montelius, L.; Kanje, M. Rectifying and sorting of regenerating axons by free-standing nanowire patterns: A highway for nerve fibers. Langmuir 2009, 25, 4343–4346.

    Article  CAS  Google Scholar 

  3. Hallstrom, W.; Lexholm, M.; Suyatin, D. B.; Hammarin, G.; Hessman, D.; Samuelson, L.; Montelius, L.; Kanje, M.; Prinz, C. N. Fifteen-piconewton force detection from neural growth cones using nanowire arrays. Nano Lett. 2010, 10, 782–787.

    Article  CAS  Google Scholar 

  4. Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294–1301.

    Article  CAS  Google Scholar 

  5. Dimaki, M.; Vazquez, P.; Olsen, M. H.; Sasso, L.; Rodriguez-Trujillo, R.; Vedarethinam, I.; Svendsen, W. E. Fabrication and characterization of 3d micro- and nanoelectrodes for neuron recordings. Sensors 2010, 10, 10339–10355.

    Article  CAS  Google Scholar 

  6. Linsmeier, C. E.; Prinz, C. N.; Pettersson, L. M. E.; Caroff, P.; Samuelson, L.; Schouenborg, J.; Montelius, L.; Danielsen, N. Nanowire biocompatibility in the brain-Looking for a needle in a 3d stack. Nano Lett. 2009, 9, 4184–4190.

    Article  Google Scholar 

  7. Hallstrom, W.; Martensson, T.; Prinz, C.; Gustavsson, P.; Montelius, L.; Samuelson, L.; Kanje, M. Gallium phosphide nanowires as a substrate for cultured neurons. Nano Lett. 2007, 7, 2960–2965.

    Article  Google Scholar 

  8. Berthing, T.; Bonde, S.; Sorensen, C. B.; Utko, P.; Nygard, J.; Martinez, K. L. Intact mammalian cell function on semiconductor nanowire arrays: New perspectives for cell-based biosensing. Small 2011, 7, 640–647.

    Article  CAS  Google Scholar 

  9. Park, S.; Kim, Y. -S.; Kim, W. B.; Jon, S. Carbon nanosyringe array as a platform for intracellular delivery. Nano Lett. 2009, 9, 1325–1329.

    Article  CAS  Google Scholar 

  10. McKnight, T. E.; Melechko, A. V.; Griffin, G. D.; Guillorn, M. A.; Merkulov, V. I.; Serna, F.; Hensley, D. K.; Doktycz, M. J.; Lowndes, D. H.; Simpson, M. L. Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation. Nanotechnology 2003, 14, 551–556.

    Article  CAS  Google Scholar 

  11. Shalek, A. K.; Robinsson, J. T.; Karp, E. S.; Lee, J. S.; Ahn, D. -R.; Yoon, M. -H.; Sutton, A.; Jorgolli, M.; Gertner, R. S.; Gujral, T. S., et al. Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. P. Natl. Acad. Sci. USA 2010, 107, 1870–1875.

    Article  CAS  Google Scholar 

  12. Kim, W.; Ng, J. K.; Kunitake, M. E.; Conklin, B. R.; Yang, P. D. Interfacing silicon nanowires with mammalian cells. J. Am. Chem. Soc. 2007, 129, 7228–7229.

    Article  CAS  Google Scholar 

  13. Meister, A.; Gabi, M.; Behr, P.; Studer, P.; Voros, J.; Niedermann, P.; Bitterli, J.; Polesel-Maris, J.; Liley, M.; Heinzelmann, H., et al. FluidFM: Combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. Nano Lett. 2009, 9, 2501–2507.

    Article  CAS  Google Scholar 

  14. Chen, X.; Kis, A.; Zettl, A.; Bertozzi, C. R. A cell nanoinjector based on carbon nanotubes P. Natl. Acad. Sci. USA 2007, 104, 8218–8222.

    Article  CAS  Google Scholar 

  15. Singhal, R.; Orynbayeva, Z.; Sundaram, R. V. K.; Niu, J. J.; Bhattacharyya, S.; Vitol, E. A.; Schrlau, M. G.; Papazoglou, E. S.; Friedman, G.; Gogotsi, Y. Multifunctional carbon-nanotube cellular endoscopes. Nat. Nanotechnol. 2011, 6, 57–64.

    Article  CAS  Google Scholar 

  16. Vakarelski, I. U.; Brown, S. C.; Higashitani, K.; Moudgil, B. M. Penetration of living cell membranes with fortified carbon nanotube tips. Langmuir 2007, 23, 10893–10896.

    Article  CAS  Google Scholar 

  17. Kobayashi, N.; Rivas-Carillo, J. D.; Soto-Gutierrez, A.; Fukazawa, T.; Chen, Y.; Navarro-Alvarez, N.; Tanaka, N. Gene delivery to embryonic stem cells. Birth Defects Res. C 2005, 75, 10–18.

    Article  CAS  Google Scholar 

  18. Karra, D.; Dahm, R. Transfection techniques for neuronal cells. J. Neurosci. 2010, 30, 6171–6177.

    Article  CAS  Google Scholar 

  19. Zhang, Y.; Yu, L. C. Microinjection as a tool of mechanical delivery. Curr Opin Biotechnol. 2008, 19, 506–510.

    Article  CAS  Google Scholar 

  20. Zhang, Y.; Yu, L. C. Single-cell microinjection technology in cell biology. BioEssays 2008, 30, 606–610.

    Article  Google Scholar 

  21. McAllister, D. V.; Allen, M. G.; Prausnitz, M. R. Microfabricated microneedles for gene and drug delivery. Annu. Rev. Biomed. Eng. 2000, 2, 289–313.

    Article  CAS  Google Scholar 

  22. Adamo, A.; Jensen, K. F. Microfluidic based single cell microinjection. Lab Chip 2008, 8, 1258–1261.

    Article  CAS  Google Scholar 

  23. Matsuoka, H.; Komazaki, T.; Mukai, Y.; Shibusawa, M.; Akane, H.; Chaki, A.; Uetake, N.; Saito, M. High throughput easy microinjection with a single-cell manipulation supporting robot. J. Biotechnol. 2005, 116, 185–194.

    Article  CAS  Google Scholar 

  24. Schrlau, M. G.; Falls, E. M.; Ziober, B. L.; Bau, H. H. Carbon nanopipettes for cell probes and intracellular injection. Nanotechnology 2008, 19, 015101.

    Article  Google Scholar 

  25. Lee, S.; An, R.; Hunt, A. J. Liquid glass electrodes for nanofluidics. Nat. Nanotechnol. 2010, 5, 412–416.

    Article  CAS  Google Scholar 

  26. Kim, B. M.; Murray, T.; Bau, H. H. The fabrication of integrated carbon pipes with sub-micron diameters. Nanotechnology 2005, 16, 1317–1320.

    Article  CAS  Google Scholar 

  27. Han, S. W.; Nakamura, C.; Kotobuki, N.; Obataya, I.; Ohgushi, H.; Nagamune, T.; Miyake, J. High-efficiency DNA injection into a single human mesenchymal stem cell using a nanoneedle and atomic force microscopy. Nanomed. Nanotechnol. 2008, 4, 215–225.

    Article  CAS  Google Scholar 

  28. Kouklin, N. A.; Kim, W. E.; Lazareck, A. D.; Xu, J. M. Carbon nanotube probes for single-cell experimentation and assays. Appl. Phys. Lett. 2005, 87, 173901.

    Article  Google Scholar 

  29. Skold, N.; Hallstrom, W.; Persson, H.; Montelius, L.; Kanje, M.; Samuelson, L.; Prinz, C. N.; Tegenfeldt, J. O. Nanofluidics in hollow nanowires. Nanotechnology. 2010, 21, 155301.

    Article  Google Scholar 

  30. Messing, M. E.; Hillerich, K.; Bolinsson, J.; Storm, K.; Johansson, J.; Dick, K. A.; Deppert, K. A comparative study of the effect of gold seed particle preparation method on nanowire growth. Nano Res. 2010, 3, 506–519.

    Article  CAS  Google Scholar 

  31. Suyatin, D. B.; Hallstrom, W.; Samuelson, L.; Montelius, L.; Prinz, C. N.; Kanje, M. Gallium phosphide nanowire arrays and their possible application in cellular force investigations. J. Vac. Sci. Technol. B 2009, 27, 3092–3094.

    Article  CAS  Google Scholar 

  32. Chang, K. L.; Lee, C. K.; Hsu, J. W.; Hsieh, H. F.; H.C., S. The etching behavior of n-gap in aqua regia solutions. J. Appl. Electrochem. 2005, 35, 77–84.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Henrik Persson or Jonas O. Tegenfeldt.

Electronic supplementary material

Supplementary material, approximately 172 KB.

Supplementary material, approximately 4.46 MB

Rights and permissions

Reprints and permissions

About this article

Cite this article

Persson, H., Beech, J.P., Samuelson, L. et al. Vertical oxide nanotubes connected by subsurface microchannels. Nano Res. 5, 190–198 (2012). https://doi.org/10.1007/s12274-012-0199-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0199-0

Keywords

Navigation