Skip to main content
Log in

Facile syntheses and enhanced electrocatalytic activities of Pt nanocrystals with {hkk} high-index surfaces

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Platinum (Pt) is an outstanding catalyst for many important industrial products. Because of its high cost and scarce reserves, it is very important to improve the performance of Pt catalysts. As the metal nanocrystals (NCs) with high-index surfaces usually show very good catalytic activity because of their high density of atomic steps and kinks, the preparation of Pt NCs with high-index facets has become a very important and hot research topic recently. In this article, we report a facile synthesis of high-yield Pt NCs with a series of {hkk} high-index facets including {211} and {411} via a solvothermal method using Pt(II) acetylacetonate as the Pt source, 1-octylamine as the solvent and capping agent, and formaldehyde as an additional surface structure regulator. Multipod Pt NCs with dominant {211} side surfaces were produced without formaldehyde, while concave Pt NCs with dominant {411} surfaces formed under the influence of formaldehyde. By analyzing the products by IR spectroscopy, we found the presence of CO on the surface of concave Pt NCs with {411} surfaces prepared from the solution containing formaldehyde. It was concluded that amine mainly stabilized the monoatomic step edges, resulting in the {211} exposed surface; with addition of formaldehyde, it decomposed into CO, leading to the formation of {411} surfaces by the additional adsorption of the CO on the {100} terraces. In addition, it was found that the as-prepared Pt NCs with high-index {211} and {411} surfaces exhibited much better catalytic activity in the electro-oxidation of ethanol than a commercial Pt/C catalyst or Pt nanocubes with low-index {100} surfaces, and the catalytic activities of Pt crystal facets decreased in the sequence {411}>{211}>{100}.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peng, Z. M.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 2009, 4, 143–164.

    Article  CAS  Google Scholar 

  2. Chen, J. Y.; Lim, B.; Lee, E. P.; Xia, Y. N. Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 2009, 4, 81–95.

    Article  Google Scholar 

  3. Chen, A. C.; Holt-Hindle, P. Platinum-based nanostructured materials: Synthesis, properties, and applications. Chem. Rev. 2010, 110, 3767–3804.

    Article  CAS  Google Scholar 

  4. Cheong, S. S.; Watt, J. D.; Tilley, R. D. Shape control of platinum and palladium nanoparticles for catalysis. Nanoscale 2010, 2, 2045–2053.

    Article  CAS  Google Scholar 

  5. Pimentel, G. C. Opportunities in Chemistry; National Academy Press: Washington, D. C., 1985; pp 193–265.

    Google Scholar 

  6. Tian, N.; Zhou, Z. Y.; Sun, S. G. Platinum metal catalysts of high-index surfaces: From single-crystal planes to electrochemically shape-controlled nanoparticles. J. Phys. Chem. C 2008, 112, 19801–19817.

    Article  CAS  Google Scholar 

  7. Jiang, Z. Y.; Kuang, Q.; Xie, Z. X.; Zheng, L. S. Syntheses and properties of micro/nanostructured crystallites with high-energy surfaces. Adv. Funct. Mater. 2010, 20, 3634–3645.

    Article  CAS  Google Scholar 

  8. Zhou, Z. Y.; Tian, N.; Li, J. T.; Broadwell, I.; Sun, S. G. Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem. Soc. Rev. 2011, 40, 4167–4185.

    Google Scholar 

  9. Teranishi, T.; Kurita, R.; Miyake, M. Shape control of Pt nanoparticles. J. Inorg. Organomet. Polym. 2000, 10, 145–156.

    Article  CAS  Google Scholar 

  10. Herricks, T.; Chen, J. Y.; Xia, Y. N. Polyol synthesis of platinum nanoparticles: Control of morphology with sodium nitrate. Nano Lett. 2004, 4, 2367–2371.

    Article  CAS  Google Scholar 

  11. Elechiguerra, J. L.; Larios-Lopez, L.; Jose-Yacaman, M. Controlled synthesis of platinum submicron and nanometric particles with novel shapes. Appl. Phys. A 2006, 84, 11–19.

    Article  CAS  Google Scholar 

  12. Ren, J. T.; Tilley, R. D. Preparation, self-assembly, and mechanistic study of highly monodispersed nanocubes. J. Am. Chem. Soc. 2007, 129, 3287–3291.

    Article  CAS  Google Scholar 

  13. Maksimuk, S.; Teng, X. W.; Yang, H. Roles of twin defects in the formation of platinum multipod nanocrystals. J. Phys. Chem. C 2007, 111, 14312–14319.

    Article  CAS  Google Scholar 

  14. Demortière, A.; Launois, P.; Goubet, N.; Albouy, P. A.; Petit, C. Shape-controlled platinum nanocubes and their assembly into two-dimensional and three-dimensional superlattices. J. Phys. Chem. B 2008, 112, 14583–14592.

    Article  Google Scholar 

  15. Ren, J. T.; Tilley, R. D. Shape-controlled growth of platinum nanoparticles. Small 2007, 3, 1508–1512.

    Article  CAS  Google Scholar 

  16. Lim, S. I.; Ojea-Jiménez, I.; Varon, M.; Casals, E.; Arbiol, J.; Puntes, V. Synthesis of platinum cubes, polypods, cuboctahedrons, and raspberries assisted by cobalt nanocrystals. Nano Lett. 2010, 10, 964–973.

    Article  CAS  Google Scholar 

  17. Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.

    Article  CAS  Google Scholar 

  18. Zhou, Z. Y.; Huang, Z. Z.; Chen, D. J.; Wang, Q.; Tian, N.; Sun, S. G. High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation. Angew. Chem. Int. Ed. 2010, 49, 411–414.

    Article  CAS  Google Scholar 

  19. Ma, Y. Y.; Kuang, Q.; Jiang, Z. Y.; Xie, Z. X.; Huang, R. B.; Zheng, L. S. Synthesis of trisoctahedral gold nanocrystals with exposed high-index facets by a facile chemical method Angew. Chem. Int. Ed. 2008, 47, 8901–8904.

    Article  CAS  Google Scholar 

  20. Ming, T.; Feng, W.; Tang, Q.; Wang, F.; Sun, L. D.; Wang, J. F.; Yan, C. H. Growth of tetrahexahedral gold nanocrystals with high-index facets. J. Am. Chem. Soc. 2009, 131, 16350–16351.

    Article  CAS  Google Scholar 

  21. Zhang, J.; Langille, M. R.; Personick, M. L.; Zhang, K.; Li, S. Y.; Mirkin, C. A. Concave cubic gold nanocrystals with high-index facets J. Am. Chem. Soc. 2010, 132, 14012–14014.

    Article  CAS  Google Scholar 

  22. Yu, Y.; Zhang, Q. B.; Lu, X. M.; Lee, J. Y. Seed-mediated synthesis of monodisperse concave trisoctahedral gold nanocrystals with controllable sizes J. Phys. Chem. C 2010, 114, 11119–11126.

    Article  CAS  Google Scholar 

  23. Li, J.; Wang, L. H.; Liu, L.; Guo, L.; Han, X. D.; Zhang, Z. Synthesis of tetrahexahedral Au nanocrystals with exposed high-index surfaces. Chem. Commun. 2010, 46, 5109–5111.

    Article  CAS  Google Scholar 

  24. Lu, C. L.; Prasad, K. S.; Wu, H. L.; Ho, J. A. A.; Huang, M. H. Au nanocube-directed fabrication of Au-Pd core-shell nanocrystals with tetrahexahedral, concave octahedral, and octahedral structures and their electrocatalytic activity. J. Am. Chem. Soc. 2010, 132, 14546–14553.

    Article  CAS  Google Scholar 

  25. Yu, Y.; Zhang, Q. B.; Liu, B.; Lee, J. Y. Synthesis of nanocrystals with variable high-index Pd facets through the controlled heteroepitaxial growth of trisoctahedral Au templates. J. Am. Chem. Soc. 2010, 132, 18258–18265.

    Article  CAS  Google Scholar 

  26. Wang, F.; Li, C. H.; Sun, L. D.; Wu, H. S.; Ming, T.; Wang, J. F.; Yu, J. C.; Yan, C. H. Heteroepitaxial growth of high-index-faceted palladium nanoshells and their catalytic performance. J. Am. Chem. Soc. 2011, 133, 1106–1111.

    Article  CAS  Google Scholar 

  27. Jiang, Q. N.; Jiang, Z. Y.; Zhang, L.; Lin, H. X.; Yang, N.; Li, H.; Liu, D. Y.; Xie, Z. X.; Tian, Z. Q. Synthesis and high electrocatalytic performance of hexagram shaped gold particles having an open surface structure with kinks. Nano Res. 2011, 4, 612–622.

    Article  CAS  Google Scholar 

  28. Zhang, J. W.; Zhang, L.; Xie, S. F.; Kuang, Q.; Han, X. G.; Xie, Z. X.; Zheng, L. S. Synthesis of concave palladium nanocubes with high-index surfaces and high electrocatalytic activities. Chem. Eur. J. 2011, 17, 9915–9919.

    Article  CAS  Google Scholar 

  29. Niu, W. X.; Xu, G. B. Crystallographic control of noble metal nanocrystals. Nano Today 2011, 6, 265–285.

    Article  CAS  Google Scholar 

  30. Yu, T.; Kim, D. Y.; Zhang, H.; Xia, Y. Platinum concave nanocubes with high-index facets and their enhanced activity for oxygen reduction reaction. Angew. Chem. Int. Ed. 2011, 50, 2773–2777.

    Article  CAS  Google Scholar 

  31. Huang, X. Q.; Zhao, Z. P.; Fan, J. M.; Tan, Y. M.; Zheng, N. F. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. J. Am. Chem. Soc. 2011, 133, 4718–4721.

    Article  CAS  Google Scholar 

  32. Kim, C.; Lee, H. Shape effect of Pt nanocrystals on electrocatalytic hydrogenation. Catal. Commun. 2009, 11, 7–10.

    Article  CAS  Google Scholar 

  33. Nakamura, M.; Hanioka, Y.; Ouchida, W.; Yamada, M. Hoshi, N. Estimation of surface structure and carbon monoxide oxidation site of shape-controlled Pt nanoparticles. ChemPhysChem 2009, 10, 2719–2724.

    Article  CAS  Google Scholar 

  34. Sun, S. G.; Zhou, Z. Y. Surface processes and kinetics of CO2 reduction on Pt(100) electrodes of different surface structure in sulfuric acid solutions. Phys. Chem. Chem. Phys. 2001, 3, 3277–3283.

    Article  CAS  Google Scholar 

  35. Wu, B. H.; Zheng, N. F.; Fu, G. Small molecules control the formation of Pt nanocrystals: A key role of carbon monoxide in the synthesis of Pt nanocubes. Chem. Commun. 2011, 47, 1039–1041.

    Article  CAS  Google Scholar 

  36. Wang, Z. L.; Ahmad, T. S.; El-Sayed, M. A. Steps, ledges and kinks on the surfaces of platinum nanoparticles of different shapes. Surf. Sci. 1997, 380, 302–310.

    Article  CAS  Google Scholar 

  37. Hitmi, H.; Belgsir, E. M.; Leger, J. M.; Lamy, C.; Lezna, R. O. A kinetic analysis of the electro-oxidation of ethanol at a platinum electrode in acid medium. Electrochim. Acta 1994, 39, 407–415.

    Article  CAS  Google Scholar 

  38. Abd-el-latif, A. A.; Mostafa, E.; Huxter, S.; Attard, G.; Baltruschat, H. Electrooxidation of ethanol at polycrystalline and platinum stepped single crystals: A study by differential electrochemical mass spectrometry. Electrochim. Acta 2010, 55, 7951–7960.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyuan Jiang or Zhaoxiong Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Chen, D., Jiang, Z. et al. Facile syntheses and enhanced electrocatalytic activities of Pt nanocrystals with {hkk} high-index surfaces. Nano Res. 5, 181–189 (2012). https://doi.org/10.1007/s12274-012-0198-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0198-1

Keywords

Navigation