Skip to main content
Log in

Anomalous kink behavior in the current-voltage characteristics of suspended carbon nanotubes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrically-heated suspended, nearly defect-free, carbon nanotubes (CNTs) exhibiting negative differential conductance in the high bias regime experience a sudden drop in current (or “kink”). The bias voltage at the kink (V kink) is found to depend strongly on gate voltage, substrate temperature, and gas environment. After subtracting the voltage drop across the contacts, however, the kink bias voltages converge around 0.2 V, independent of gate voltage and gas environment. This bias voltage of 0.2 V corresponds to the threshold energy of optical phonon emission. This phenomenon is corroborated by simultaneously monitoring the Raman spectra of these nanotubes as a function of bias voltage. At the kink bias voltage, the G band Raman modes experience a sudden downshift, further indicating threshold optical phonon emission. A Landauer model is used to fit these kinks in various gas environments where the kink is modeled as a change in the optical phonon lifetime, which corresponds to a change in the non-equilibrium factor that describes the existence of hot phonons in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Javey, A.; Guo, J.; Paulsson, M.; Wang, Q.; Mann, D.; Lundstrom, M.; Dai, H. J. High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett. 2004, 92, 106804.

    Article  Google Scholar 

  2. Pop, E.; Mann, D.; Cao, J.; Wang, Q.; Goodson, K.; Dai, H. J. Negative differential conductance and hot phonons in suspended nanotube molecular wires. Phys. Rev. Lett. 2005, 95, 155505.

    Article  Google Scholar 

  3. Cobden, D. H.; Bockrath, M.; McEuen, P. L.; Rinzler, A. G.; Smalley, R. E. Spin splitting and even-odd effects in carbon nanotubes. Phys. Rev. Lett. 1998, 81, 681–684.

    Article  CAS  Google Scholar 

  4. Deshpande, V. V.; Chandra, B.; Caldwell, R.; Novikov, D. S.; Hone, J.; Bockrath, M. Mott Insulating state in ultraclean carbon nanotubes Science 2009, 323, 106–110.

    Article  CAS  Google Scholar 

  5. Bushmaker, A. W.; Deshpande, V. V.; Hsieh, S.; Bockrath, M. W.; Cronin, S. B. Large modulations in the intensity of raman-scattered light from pristine carbon nanotubes. Phys. Rev. Lett. 2009, 103, 067401.

    Article  Google Scholar 

  6. Bockrath, M.; Cobden, D. H.; Lu, J.; Rinzler, A. G.; Smalley, R. E.; Balents, L.; McEuen, P. L. Luttinger-liquid behaviour in carbon nanotubes. Nature 1999, 397, 598–601.

    Article  CAS  Google Scholar 

  7. Mann, D.; Pop, E.; Cao, J.; Wang, Q.; Goodson, K.; Dai, H. J. Thermally and molecularly stimulated relaxation of hot phonons in suspended carbon nanotubes. J. Phys. Chem. 2006, 110, 1502–1505.

    Article  CAS  Google Scholar 

  8. Park, J. Y.; Rosenblatt, S.; Yaish, Y.; Sazonova, V.; Üstünel, H.; Braig, S.; Arias, T. A.; Brouwer, P. W.; McEuen P. L. Electron-phonon scattering in metallic single-walled carbon nanotubes. Nano Lett. 2004, 4, 517–520.

    Article  CAS  Google Scholar 

  9. McEuen, P. L.; Fuhrer, M. S.; Park, H. K. Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 2002, 1, 78–85.

    Article  Google Scholar 

  10. Radosavljevic, M.; Lefebvre, J.; Johnson, A. T. High-field electrical transport and breakdown in bundles of single-wall carbon nanotubes. Phys. Rev. B 2001, 64, 241307.

    Article  Google Scholar 

  11. Giamarchi, T. Quantum physics in one dimension; Oxford University Press: USA, 2004.

    Google Scholar 

  12. Yao, Z.; Kane, C. L.; Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 2000, 84, 2941–2944.

    Article  CAS  Google Scholar 

  13. Bushmaker, A. W.; Deshpande, V. V.; Hsieh, S.; Bockrath, M. W.; Cronin, S. B. Gate voltage controllable non-equilibrium and non-ohmic behavior in suspended carbon nanotubes. Nano Lett. 2009, 9, 2862–2866.

    Article  CAS  Google Scholar 

  14. Bushmaker, A. W.; Deshpande, V. V.; Bockrath, M. W.; Cronin, S. B. Direct observation of mode selective electron-phonon coupling in suspended carbon nanotubes. Nano Lett. 2007, 7, 3618–3622.

    Article  CAS  Google Scholar 

  15. Piscanec, S.; Lazzeri, M.; Robertson, J.; Ferrari, A. C.; Mauri F. Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects. Phys. Rev. B 2007, 75, 035427.

    Article  Google Scholar 

  16. Lazzeri, M.; Piscanec, S.; Mauri, F.; Ferrari, A. C.; Robertson, J. Electron transport and hot phonons in carbon nanotubes. Phys. Rev. Lett. 2005, 95, 236802.

    Article  Google Scholar 

  17. Bonini, N.; Lazzeri, M.; Marzari, N.; Mauri, F. Phonon anharmonicities in graphite and graphene. Phys. Rev. Lett. 2007, 99, 176802.

    Article  Google Scholar 

  18. Supriyo, D. Electronic transport in mesoscopic systems; Cambridge University Press: Cambridge and New York, 1997.

    Google Scholar 

  19. Farhat, H.; Son, H.; Samsonidze, G. G.; Reich, S.; Dresselhaus, M. S.; Kong, J. Phonon softening in individual metallic carbon nanotubes due to the Kohn anomaly. Phys. Rev. Lett. 2007, 99, 145506.

    Article  CAS  Google Scholar 

  20. Hsu, I. K.; Pettes, M. T.; Aykol, M.; Shi, L.; Cronin, S. B. The effect of gas environment on electrical heating in suspended carbon nanotubes. J. Appl. Phys. 2010, 108, 084307.

    Article  Google Scholar 

  21. Mingo, N.; Broido, D. A. Length dependence of carbon nanotube thermal conductivity and the “problem of long waves”. Nano Lett. 2005, 5, 1221–1225.

    Article  CAS  Google Scholar 

  22. Liu, Z. W.; Bushmaker, A.; Aykol, M.; Cronin, S. B. Thermal emission spectra from individual suspended carbon nanotubes. ACS Nano 2011, 5, 4634–4640.

    Article  CAS  Google Scholar 

  23. Zhao, Y.; Liao, A.; Pop, E. Multiband mobility in semi-conducting carbon nanotubes. IEEE Electron Device Lett. 2009, 30, 1078–1080.

    Article  CAS  Google Scholar 

  24. Xia, M. G.; Zhang, L.; Zhang, S. L. Effect of optical phonons scattering on electronic current in metallic carbon nanotubes. Phys. Lett. A 2009, 373, 385–390.

    Article  CAS  Google Scholar 

  25. Liao, A.; Zhao, Y.; Pop, E. Avalanche-induced current enhancement in semiconducting carbon nanotubes. Phys. Rev. Lett. 2008, 101, 256804.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Cronin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amer, M., Bushmaker, A. & Cronin, S. Anomalous kink behavior in the current-voltage characteristics of suspended carbon nanotubes. Nano Res. 5, 172–180 (2012). https://doi.org/10.1007/s12274-012-0197-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0197-2

Keywords

Navigation