Skip to main content
Log in

Controlled synthesis of porous Ag/Au bimetallic hollow nanoshells with tunable plasmonic and catalytic properties

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

This paper describes a simple and facile method for the synthesis of Ag/Au bimetallic hollow and porous nanoshells (HPNSs) with controllable porosity, using polycrystalline Ag nanoparticles as starting templates. The optical and catalytic properties of the HPNSs can be easily tuned by using hydrogen peroxide as a mild etchant to controllably dissolve Ag atoms from the precursor Ag/Au bimetallic hollow nanoshells (NSs). The surface plasmon bands of the HPNSs can be easily tuned from the visible to the near infrared (NIR) region. As a model reaction to evaluate the catalytic activity of the HPNSs, we chose the reduction of p-nitrophenol by NaBH4 to afford p-aminophenol. The porous NSs exhibit higher catalytic activity than non-porous NSs even though the latter have higher Au/Ag ratios than the former. Although the composition (Au/Ag ratio) may have some effect, the morphology (porosity) of the HPNSs plays the most important role in the catalysis. The as-synthesized plasmonic HPNSs, due to their facile aqueous-phase preparation, tunable optical properties (in the visible and NIR windows), and unique porous hollow structures, have promising potential applications in various fields ranging from biosensing, nanomedicine (drug/gene delivery, cancer theranostics, etc.), to catalysis and solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lim, D. K.; Jeon, K. S.; Kim, H. M.; Nam, J. M.; Suh, Y. D. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater. 2010, 9, 60–67.

    Article  CAS  Google Scholar 

  2. Lim, D. K.; Jeon, K. S.; Hwang, J. H.; Kim, H.; Kwon, S.; Suh, Y. D.; Nam, J. M. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat. Nanotechnol. 2011, 6, 452–460.

    Article  CAS  Google Scholar 

  3. Jin, Y. D.; Gao, X. H. Plasmonic fluorescent quantum dots. Nat. Nanotechnol. 2009, 4, 571–576.

    Article  CAS  Google Scholar 

  4. Jin, Y. D.; Jia, C. X.; Huang, S. W.; O’Donnell, M.; Gao, X. H. Multifunctional nanoparticles as coupled contrast agents. Nat. Commun. 2010, 1, 41.

    Article  Google Scholar 

  5. Jin, Y. D.; Gao, X. H. Spectrally tunable leakage-free gold nanocontainers J. Am. Chem. Soc. 2009, 131, 17774–17776.

    Article  CAS  Google Scholar 

  6. Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 2006, 311, 189–193.

    Article  CAS  Google Scholar 

  7. Atwater, H. A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213.

    Article  CAS  Google Scholar 

  8. Skrabalak, S. E.; Chen, J. Y.; Sun, Y. G.; Lu, X. M.; Au, L.; Cobley, C. M.; Xia, Y. N. Gold nanocages: Synthesis, properties, and applications. Acc. Chem. Res. 2008, 41, 1587–1595.

    Article  CAS  Google Scholar 

  9. Zeng, J.; Zhang, Q.; Chen, J. Y.; Xia, Y. N. A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. Nano Lett. 2010, 10, 30–35.

    Article  CAS  Google Scholar 

  10. Yavuz, M. S.; Cheng, Y. Y.; Chen, J. Y.; Cobley, C. M.; Zhang, Q.; Rycenga, M.; Xie, J. W.; Kim, C.; Song, K. H.; Schwartz, A. G. et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 2009, 8, 935–939.

    Article  CAS  Google Scholar 

  11. Moon, G. D.; Choi, S. W.; Cai, X.; Li, W. Y.; Cho, E. C.; Jeong, U.; Wang, L. V.; Xia, Y. N. A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release. J. Am. Chem. Soc. 2011, 133, 4762–4675.

    Article  CAS  Google Scholar 

  12. Huang, C. W.; Hao, Y. W.; Nyagilo, J.; Dave, D. P.; Xu, L. F.; Sun, X. K. Porous hollow gold nanoparticles for cancer SERS imaging. J. Nano Res. 2010, 10, 137–148.

    Article  CAS  Google Scholar 

  13. Sun, Y. G.; Xia, Y. N. Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction. Nano Lett. 2003, 3, 1569–1572.

    Article  CAS  Google Scholar 

  14. Sun, Y. G.; Xia, Y. N. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv. Mater. 2002, 14, 833–837.

    Article  CAS  Google Scholar 

  15. Sun, Y. G.; Xia, Y. N. Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal. Chem. 2002, 74, 5297–5305.

    Article  CAS  Google Scholar 

  16. Zhang, Q.; Cobley, C. M.; Zeng, J.; Wen, L. P.; Chen, J. Y.; Xia, Y. N. Dissolving Ag from Au-Ag alloy nanoboxes with H2O2: A method for both tailoring the optical properties and measuring the H2O2 concentration. J. Phys. Chem. C 2010, 114, 6396–6400.

    Article  CAS  Google Scholar 

  17. Lu, X. M.; Au, L.; McLellan, J.; Li, Z. Y.; Marquez, M.; Xia, Y. N. Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant Based on Fe(NO3)3 or NH4OH. Nano Lett. 2007, 7, 1764–1769.

    Article  CAS  Google Scholar 

  18. Mulvihill, M. J.; Ling, X. Y.; Henzie, J.; Yang, P. D. Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. J. Am. Chem. Soc. 2010, 132, 268–274.

    Article  CAS  Google Scholar 

  19. McEachran, M.; Keogh, D.; Pietrobon, B.; Cathcart, N.; Gourevich, I.; Coombs, N.; Kitaev, V. Ultrathin gold nanoframes through surfactant-free templating of faceted pentagonal silver nanoparticles. J. Am. Chem. Soc. 2011, 133, 8066–8069.

    Article  CAS  Google Scholar 

  20. Kim, S. W.; Kim, M.; Lee, W. Y.; Hyeon, T. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions. J. Am. Chem. Soc. 2002, 124, 7642–7643.

    Article  CAS  Google Scholar 

  21. Chen, H. M.; Liu, R. S.; Lo, M. Y.; Chang, S. C.; Tsai, L. D.; Peng, Y. M.; Lee, J. F. Hollow platinum spheres with nano-channels: Synthesis and enhanced catalysis for oxygen reduction. J. Phys. Chem. C 2008, 112, 7522–7526.

    Article  CAS  Google Scholar 

  22. Kim, M. H.; Lu, X. M.; Wiley, B.; Lee, E. P.; Xia, Y. N. Morphological evolution of single-crystal Ag nanospheres during the galvanic replacement reaction with HAuCl4. J. Phys. Chem. C 2008, 112, 7872–7876.

    Article  CAS  Google Scholar 

  23. Mei, Y.; Lu, Y.; Polzer, F.; Ballauff, M.; Drechsler, M. Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core-shell microgels. Chem. Mater. 2007, 19, 1062–1069.

    Article  CAS  Google Scholar 

  24. Yu, T. Y.; Zeng, J.; Lim, B.; Xia, Y. N. Aqueous-phase synthesis of Pt/CeO2 hybrid nanostructures and their catalytic properties. Adv. Mater. 2010, 22, 5188–5192.

    Article  CAS  Google Scholar 

  25. Schrinner, M.; Ballauff, M.; Talmon, Y.; Kauffmann, Y.; Thun, J.; Möller, M.; Breu, J. Single nanocrystals of platinum prepared by partial dissolution of Au-Pt nanoalloys. Science 2009, 323, 617–620.

    Article  CAS  Google Scholar 

  26. Guo, S. J.; Dong, S. J.; Wang, E. A general method for the rapid synthesis of hollow metallic or bimetallic nano-electrocatalysts with urchinlike morphology. Chem. Eur. J. 2008, 14, 4689–4695.

    Article  CAS  Google Scholar 

  27. Jin, Y. D.; Dong, S. J. Diffusion-limited, aggregation-based, mesoscopic assembly of roughened core-shell bimetallic nanoparticles into fractal networks at the air-water interface. Angew. Chem. Int. Ed. 2002, 41, 1040–1044.

    Article  CAS  Google Scholar 

  28. Jin, Y. D.; Dong, S. J. One-pot synthesis and characterization of novel silver-gold bimetallic nanostructures with hollow interiors and bearing nanospikes. J. Phys. Chem. B 2003, 107, 12902–12905.

    Article  CAS  Google Scholar 

  29. Yen, C. W.; Lin, M. L.; Wang, A.; Chen, S. A.; Mou, C. Y. CO oxidation catalyzed by Au-Ag bimetallic nanoparticles supported in mesoporous silica. J. Phys. Chem. C 2009, 113, 17831–17839.

    Article  CAS  Google Scholar 

  30. Wittstock, A.; Zielasek, V.; Biener, J.; Friend, C. M.; Bäumer, M. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 2010, 327, 319–322.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongdong Jin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, H., Wang, P., He, H. et al. Controlled synthesis of porous Ag/Au bimetallic hollow nanoshells with tunable plasmonic and catalytic properties. Nano Res. 5, 135–144 (2012). https://doi.org/10.1007/s12274-012-0194-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0194-5

Keywords

Navigation