Skip to main content
Log in

Photothermoelectric effects in single-walled carbon nanotube films: Reinterpreting scanning photocurrent experiments

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We revisit the mechanism leading to the photoresponse of locally illuminated single-walled carbon nanotube (SWNT) films deposited on substrates. Our study examines the impact of multiple device parameters and provides many evidences that the position-dependent photocurrent is dominated by photothermoelectric effects. The photoresponse arises from the temperature variations at the metal-nanotube film interfaces, where mismatches of the Seebeck coefficients are measured. Our work also stresses the impact of the substrates, electrode materials and post-thermal treatments on the amplitude and dynamics of the photoresponse. The knowledge gained should guide the future development of photothermoelectric devices and detectors based on SWNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avouris, P.; Martel, R. Progress in carbon nanotube electronics and photonics. MRS Bull. 2010, 35, 306–313.

    Article  CAS  Google Scholar 

  2. Freitag, M.; Martin, Y.; Misewich, J. A.; Martel, R.; Avouris, P. Photoconductivity of single carbon nanotubes. Nano Lett. 2003, 3, 1067–1071.

    Article  CAS  Google Scholar 

  3. Sfeir, M. Y.; Misewich, J. A.; Rosenblatt, S.; Wu, Y.; Voisin, C.; Yan, H. G.; Berciaud, S.; Heinz, T. F.; Chandra, B.; Caldwell, R.; Shan, Y. Y.; Hone, J.; Carr, G. L. Infrared spectra of individual semiconducting single-walled carbon nanotubes: Testing the scaling of transition energies for large diameter nanotubes. Phys. Rev. B, 2010, 82, 195424.

    Article  Google Scholar 

  4. Balasubramanian, K.; Burghard, M.; Kern, K.; Scolari, M.; Mews, A. Photocurrent imaging of charge transport barriers in carbon nanotube devices. Nano Lett. 2005, 5, 507–510.

    Article  CAS  Google Scholar 

  5. Itkis, M. E.; Borondics, F.; Yu, A. P.; Haddon, R. C. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science 2006, 312, 413–416.

    Article  CAS  Google Scholar 

  6. Lu, S. X.; Panchapakesan, B. Photoconductivity in single wall carbon nanotube sheets. Nanotechnology, 2006, 17, 1843–1850.

    Article  CAS  Google Scholar 

  7. Matsuoka, Y.; Fujiwara, A.; Ogawa, N.; Miyano, K.; Kataura, H.; Maniwa, Y.; Suzuki, S.; Achiba, Y. Temperature dependence of photoconductivity at 0.7 eV in single-wall carbon nanotube films. Sci. Technol. Adv. Mat. 2003, 4, 47–50.

    Article  CAS  Google Scholar 

  8. Lu, R. T.; Li, Z. Z.; Xu, G. W.; Wu, J. Z. Suspending single-wall carbon nanotube thin film infrared bolometers on microchannels. Appl. Phys. Lett. 2009, 94, 163110.

    Article  Google Scholar 

  9. Li, Z. R.; Kunets, V. P.; Saini, V.; Xu, Y.; Dervishi, E.; Salamo, G. J.; Biris, A. R.; Biris, A. S. Light-harvesting using high density p-type single wall carbon nanotube/n-type silicon heterojunctions. ACS Nano 2009, 3, 1407–1414.

    Article  Google Scholar 

  10. Bindl, D. J.; Wu, M. Y.; Prehn, F. C.; Arnold, M. S. Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films. Nano Lett. 2011, 11, 455–460.

    Article  CAS  Google Scholar 

  11. St-Antoine, B. C.; Ménard, D.; Martel, R. Single-walled carbon nanotube thermopile for broadband light detection. Nano Lett. 2011, 11, 609–613.

    Article  CAS  Google Scholar 

  12. Hu, C. H.; Liu, C. H.; Chen, L. Z.; Meng, C. Z.; Fan, S. S. A demo opto-electronic power source based on single-walled carbon nanotube sheets. ACS Nano, 2010, 4, 4701–4706.

    Article  CAS  Google Scholar 

  13. St-Antoine, B. C.; Ménard, D.; Martel, R. Position sensitive photothermoelectric effect in suspended single-walled carbon nanotube films. Nano Lett. 2009, 9, 3503–3508.

    Article  CAS  Google Scholar 

  14. Varghese, B.; Tamang, R.; Tok, E. S.; Mhaisalkar, S. G.; Sow, C. H. Photothermoelectric effects in localized photocurrent of individual VO2 nanowires. J. Phys. Chem. C, 2010,114, 15149–15156.

    CAS  Google Scholar 

  15. Xu, X. D.; Gabor, N. M.; Alden, J. S.; van der Zande, A. M.; McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 2010, 10, 562–566.

    Article  CAS  Google Scholar 

  16. Park, J.; Ahn, Y. H.; Ruiz-Vargas, C. Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 2009, 9, 1742–1746.

    Article  CAS  Google Scholar 

  17. Freitag, M.; Tsang, J. C.; Bol, A.; Yuan, D. N.; Liu, J.; Avouris, P. Imaging of the Schottky barriers and charge depletion in carbon nanotube transistors. Nano Lett. 2007, 7, 2037–2042.

    Article  CAS  Google Scholar 

  18. Ahn, Y.; Dunning, J.; Park, J. Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors. Nano Lett. 2005, 5, 1367–1370.

    Article  CAS  Google Scholar 

  19. Mueller, T.; Xia, F.; Freitag, M.; Tsang, J.; Avouris, P. Role of contacts in graphene transistors: A scanning photocurrent study. Phys. Rev. B, 2009, 79, 245430.

    Article  Google Scholar 

  20. Liu, Y.; Lu, S. X.; Panchapakesan, B. Alignment enhanced photoconductivity in single wall carbon nanotube films. Nanotechnology 2009, 20, 035203.

    Article  Google Scholar 

  21. Merchant, C. A.; Marković, N. Effects of diffusion on photocurrent generation in single-walled carbon nanotube films. Appl. Phys. Lett. 2008, 92, 243510.

    Article  Google Scholar 

  22. Sarker, B. K.; Arif, M.; Stokes, P.; Khondaker, S. I. Diffusion mediated photoconduction in multiwalled carbon nanotube films. J. Appl. Phys. 2009, 106, 074307.

    Article  Google Scholar 

  23. Ghosh, S.; Sarker, B. K.; Chunder, A.; Zhai, L.; Khondaker, S. I. Position dependent photodetector from large area reduced graphene oxide thin films. Appl. Phys. Lett. 2010, 96, 163109.

    Article  Google Scholar 

  24. Grosse, K. L.; Bae, M. H.; Lian, F. F.; Pop, E.; King, W. P. Nanoscale Joule heating, Peltier cooling and current crowding at graphene-metal contacts. Nat. Nanotechnol. 2011, 6, 287–290.

    Article  CAS  Google Scholar 

  25. Sun, J. L.; Xu, J.; Zhu, J. L.; Li, B. L. Disordered multiwalled carbon nanotube mat for light spot position detecting. Appl. Phys. A-Mater. 2008, 91, 229–233.

    Article  CAS  Google Scholar 

  26. Wu, Z. C.; Chen, Z. H.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F.; Rinzler, A. G. Transparent, conductive carbon nanotube films. Science, 2004, 305, 1273–1276.

    Article  CAS  Google Scholar 

  27. Merchant, C. A.; Marković, N. The photoresponse of spray-coated and free-standing carbon nanotube films with Schottky contacts. Nanotechnology, 2009, 20, 175202.

    Article  CAS  Google Scholar 

  28. Lien, D. H.; Hsu, W. K.; Zan, H. W.; Tai, N. H.; Tsai, C. H. Photocurrent amplification at carbon nanotube-metal contacts. Adv. Mater. 2006, 18, 98–103.

    Article  CAS  Google Scholar 

  29. Bradley, K.; Jhi, S. H.; Collins, P. G.; Hone, J.; Cohen, M. L.; Louie, S. G.; Zettl, A. Is the intrinsic thermoelectric power of carbon nanotubes positive? Phys. Rev. Lett. 2000, 85, 4361–4364.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David Ménard or Richard Martel.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

St-Antoine, B.C., Ménard, D. & Martel, R. Photothermoelectric effects in single-walled carbon nanotube films: Reinterpreting scanning photocurrent experiments. Nano Res. 5, 73–81 (2012). https://doi.org/10.1007/s12274-011-0186-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0186-x

Keywords

Navigation