Skip to main content
Log in

Edge stability of boron nitride nanoribbons and its application in designing hybrid BNC structures

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

First-principles investigations of the edge energies and edge stresses of single-layer hexagonal boron nitride (BN) are presented. The armchair edges of BN nanoribbons (BNNRs) are more stable in energy than zigzag ones. Armchair BNNRs are under compressive edge stress while zigzag BNNRs are under tensile edge stress, due to the edge reconstruction effect and edge coulomb repulsion effect. The intrinsic spin-polarization and edge saturation play important roles in modulating the edge stability of BNNRs. The edge energy difference between BN and graphene can be used to guide the design of specific hybrid BNC structures as the hybrid BNC systems prefer the low-energy edge configurations: In an armchair BNC nanoribbon (BNCNR), BN domains are expected to grow outside of C domains, while the opposite occurs in a zigzag BNCNR. More importantly, armchair BNCNRs can reproduce unique electronic properties of armchair graphene nanoribbons (GNRs), which are expected to be robust against edge functionalization or disorder. Within a certain range of C/BN ratios, zigzag BNCNRs may exhibit intrinsic half-metallicity without any external constraints. These diverse electronic properties of BNCNRs may offer unique opportunities to develop nanoscale electronics and spintronics beyond individual graphene and BN. More generally, these principles for designing BNC can also be extended to other hybrid nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Corso, M.; Auwarter, W.; Muntwiler, M.; Tamai, A.; Greber, T.; Osterwalder, J. Boron Nitride nanomesh. Science 2004, 303, 217–220.

    Article  CAS  Google Scholar 

  2. Nagashima, A.; Tejima, N.; Gamou, Y.; Kawai, T.; Oshima, C. Electronic-structure of monolayer hexagonal boron-nitride physisorbed on metal-surfaces. Phys. Rev. Lett. 1995, 75, 3918–3921.

    Article  CAS  Google Scholar 

  3. Jin, C. H.; Lin, F.; Suenaga, K.; Iijima, S. Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 2009, 102, 195505.

    Article  Google Scholar 

  4. Meyer, J. C.; Chuvilin, A.; Algara-Siller, G.; Biskupek, J.; Kaiser, U. Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. Nano Lett. 2009, 9, 2683–2689.

    Article  CAS  Google Scholar 

  5. Han, M. Y.; Ozyilmaz, B.; Zhang, Y. B.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.

    Article  Google Scholar 

  6. Chen, Z.; Lin, Y. M.; Rooks, M. J.; Avouris, P. Graphene nano-ribbon electronics. Physica E 2007, 40, 228–232.

    Article  CAS  Google Scholar 

  7. Tapaszto, L.; Dobrik, G.; Lambin, P.; Biro, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 2008, 3, 397–401.

    Article  CAS  Google Scholar 

  8. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

    Article  CAS  Google Scholar 

  9. Son, Y.W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.

    Article  Google Scholar 

  10. Wang, X. R.; Ouyang, Y. J.; Li, X. L.; Wang, H. L.; Guo, J.; Dai, H. J. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 2008, 100, 206803.

    Article  Google Scholar 

  11. Park, C. H.; Louie, S. G. Energy gaps and Stark effect in boron nitride nanoribbons. Nano Lett. 2008, 8, 2200–2203.

    Article  CAS  Google Scholar 

  12. Zheng, F. W.; Zhou, G.; Liu, Z. R.; Wu, J.; Duan, W. H.; Gu, B.L.; Zhang, S. B. Half metallicity along the edge of zigzag boron nitride nanoribbons. Phys. Rev. B 2008, 78, 205415.

    Article  Google Scholar 

  13. Barone, V.; Peralta, J. E. Magnetic boron nitride nanoribbons with tunable electronic properties. Nano Lett. 2008, 8, 2210–2214.

    Article  CAS  Google Scholar 

  14. Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60–63.

    Article  CAS  Google Scholar 

  15. Gass, M. H.; Bangert, U.; Bleloch, A. L.; Wang, P.; Nair, R. R.; Geim, A. K. Free-standing graphene at atomic resolution. Nat. Nanotechnol. 2008, 3, 676–681.

    Article  CAS  Google Scholar 

  16. Liu, Z.; Suenaga, K.; Harris, P. J. F.; Iijima, S. Open and closed edges of graphene layers. Phys. Rev. Lett. 2009, 102, 015501.

    Article  Google Scholar 

  17. Huang, J. Y.; Ding, F.; Yakobson, B. I.; Lu, P.; Qi, L.; Li, J. In situ observation of graphene sublimation and multi-layer edge reconstructions. P. Natl. Acad. Sci. USA 2009, 106, 10103–10108.

    Article  CAS  Google Scholar 

  18. Shenoy, V. B.; Reddy, C. D.; Ramasubramaniam, A.; Zhang, Y. W. Edge-stress-induced warping of graphene sheets and nanoribbons. Phys. Rev. Lett. 2008, 101, 245501.

    Article  CAS  Google Scholar 

  19. Bets, K. V.; Yakobson, B. I. Spontaneous twist and intrinsic instabilities of pristine graphene nanoribbons. Nano Res. 2009, 2, 161–166.

    Article  CAS  Google Scholar 

  20. Huang, B.; Liu, M.; Su, N. H.; Wu, J.; Duan, W. H.; Gu, B. L.; Liu, F. Quantum manifestations of graphene edge stress and edge instability: A first-principles study. Phys. Rev. Lett. 2009, 102, 166404.

    Article  Google Scholar 

  21. Jun S. Density-functional study of edge stress in graphene. Phys. Rev. B 2008, 78, 073405.

    Article  Google Scholar 

  22. Mukherjee, R.; Bhowmick, S. Edge stabilities of hexagonal boron nitride nanoribbons: A first-principles study. J. Chem. Theory Comput. 2011, 7, 720–724.

    Article  CAS  Google Scholar 

  23. Jun, S.; Li, X. B.; Meng, F. C.; Ciobanu, C. V. Elastic properties of edges in BN and SiC nanoribbons and of boundaries in C-BN superlattices: A density functional theory study. Phys. Rev. B 2011, 83, 153407.

    Article  Google Scholar 

  24. Xiang, H. J.; Yang, J. L.; Hou, J. G.; Zhu, Q. S. First-principles study of small-radius single-walled BN nanotubes. Phys. Rev. B 2003, 68, 035427.

    Article  Google Scholar 

  25. Ci, L.; Song, L.; Jin, C. H..; Jariwala, D.; Wu, D. X.; Li, Y. J.; Srivastava, A.; Wang, Z. F.; Storr, K.; Balicas, L.; Liu, F.; Ajayan, P. M. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 2010, 9, 430–435.

    Article  CAS  Google Scholar 

  26. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  27. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  28. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  29. Nielsen, O. H.; Martin, R. M. Quantum-mechanical theory of stress and force. Phys. Rev. B 1985, 32, 3780–3791.

    Article  CAS  Google Scholar 

  30. Wu, M. H.; Wu, X. J.; Pei, Y.; Zeng, X. C. Inorganic nanoribbons with unpassivated zigzag edges: Half metallicity and edge reconstruction. Nano Res. 2011, 4, 233–239.

    Article  CAS  Google Scholar 

  31. Koskinen, P.; Malola, S.; Hakkinen, H. Self-passivating edge reconstructions of graphene. Phys. Rev. Lett. 2008, 101, 115502.

    Article  Google Scholar 

  32. Yuge, K. Phase stability of boron carbon nitride in a heterographene structure: A first-principles study. Phys. Rev. B 2009, 79, 144109.

    Article  Google Scholar 

  33. Krivanek, O. L.; Chisholm, M. F.; Nicolosi, V.; Pennycook, T. J.; Corbin, G. J.; Dellby, N.; Murfitt, M. F.; Own, C. S.; Szilagyi, Z. S.; Oxley, M. P. et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 2010, 464, 571–574.

    Article  CAS  Google Scholar 

  34. Yan, Q. M.; Huang, B.; Yu, J.; Zheng, F. W.; Zang, J.; Wu, J.; Gu, B. L.; Liu, F.; Duan, W. H. Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano Lett. 2007, 7, 1469–1473.

    Article  CAS  Google Scholar 

  35. Singh, A. K.; Yakobson, B. I. Electronics and magnetism of patterned graphene nanoroads. Nano Lett. 2009, 9, 1540–1543.

    Article  CAS  Google Scholar 

  36. Xiang, H. J.; Kan, E. J.; Wei, S.H.; Whangbo, M.H.; Yang, J. L. “Narrow” graphene nanoribbons made easier by partial hydrogenation. Nano Lett. 2009, 9, 4025–4030.

    Article  CAS  Google Scholar 

  37. Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 1996, 54, 17954–17961.

    Article  CAS  Google Scholar 

  38. Son, Y. -W.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349.

    Article  CAS  Google Scholar 

  39. Kan, E. J.; Li, Z. Y.; Yang, J. L.; Hou, J. G. Half-metallicity in edge-modified zigzag graphene nanoribbons. J. Am. Chem. Soc. 2008, 130, 4224–4225.

    Article  CAS  Google Scholar 

  40. Kim, W. Y.; Kim, K. S. Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Nat. Nanotechnol. 2008, 3, 408–412.

    Article  CAS  Google Scholar 

  41. Munoz-Rojas, F.; Fernandez-Rossier, J.; Palacios, J. J. Giant magnetoresistance in ultrasmall graphene based devices. Phys. Rev. Lett. 2009, 102, 136810.

    Article  CAS  Google Scholar 

  42. Seol, G.; Guo, J. Bandgap opening in boron nitride confined armchair graphene nanoribbon. Appl. Phys. Lett. 2011, 98, 143107.

    Article  Google Scholar 

  43. Du, A. J.; Chen, Y.; Zhu, Z. H.; Lu, G. Q.; Smith, S. C. C-BN single-walled nanotubes from hybrid connection of BN/C nanoribbons: Prediction by ab initio density functional calculations. J. Am. Chem. Soc. 2009, 131, 1682–1683.

    Article  CAS  Google Scholar 

  44. Huang, B.; Si, C.; Lee, H.; Zhao, L.; Wu, J.; Gu, B.L.; Duan, W. H. Intrinsic half-metallic BN-C nanotubes. Appl. Phys. Lett. 2010, 97, 043115.

    Article  Google Scholar 

  45. Huang, B.; Yan, Q. M.; Zhou, G.; Wu, J.; Gu, B.L.; Duan, W. H.; Liu, F. Making a field effect transistor on a single graphene nanoribbon by selective doping. Appl. Phys. Lett. 2007, 91, 253122.

    Article  Google Scholar 

  46. Huang, B.; Liu, F.; Wu, J.; Gu, B.L.; Duan, W. H. Suppression of spin polarization in graphene nanoribbons by edge defects and impurities. Phys. Rev. B 2008, 77, 153411.

    Article  Google Scholar 

  47. Huang, B.; Li, Z. Y.; Liu, Z. R.; Zhou, G.; Hao, S. G.; Wu, J.; Gu, B.L.; Duan, W. H. Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor. J. Phys. Chem. C 2008, 112, 13442–13446.

    Article  CAS  Google Scholar 

  48. Li, J.; Li, Z. Y.; Zhou, G.; Liu, Z. R.; Wu, J. A.; Gu, B.L.; Ihm, J. S.; Duan, W. H. Spontaneous edge-defect formation and defect-induced conductance suppression in graphene nanoribbons. Phys. Rev. B 2010, 82, 115410.

    Article  Google Scholar 

  49. Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.

    Article  CAS  Google Scholar 

  50. Cervantes-Sodi, F.; Csanyi, G.; Piscanec, S.; Ferrari, A. C. Edge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties. Phys. Rev. B 2008, 77, 165427.

    Article  Google Scholar 

  51. Chen, Y.; Zou, J.; Campbell, S. J.; Le Caer, G. Boron nitride nanotubes: Pronounced resistance to oxidation. Appl. Phys. Lett. 2004, 84, 2430–2432.

    Article  CAS  Google Scholar 

  52. Wu, X. J.; An, W.; Zeng, X. C. Chemical functionalization of boron-nitride nanotubes with NH3 and amino functional groups. J.Am. Chem. Soc. 2006, 128, 12001–12006.

    Article  CAS  Google Scholar 

  53. Kan, E. J.; Wu, X. J.; Li, Z. Y.; Zeng, X. C.; Yang, J. L.; Hou, J. G. Half-metallicity in hybrid BCN nanoribbons. J. Chem. Phys. 2008, 129, 084712.

    Article  Google Scholar 

  54. Li, J.; Zhou, G.; Chen, Y.; Gu, B.L.; Duan, W. H. Magnetism of C adatoms on BN nanostructures: Implications for functional nanodevices. J. Am. Chem. Soc. 2009, 131, 1796–1801.

    Article  CAS  Google Scholar 

  55. Dutta, S.; Manna, A. K.; Pati, S. K. Intrinsic half-metallicity in modified graphene nanoribbons. Phys. Rev. Lett. 2009, 102, 096601.

    Article  Google Scholar 

  56. Pruneda, J. M. Origin of half-semimetallicity induced at interfaces of C-BN heterostructures. Phys. Rev. B 2010, 81, 161409.

    Article  Google Scholar 

  57. Liu, Y. L.; Wu, X. J.; Zhao, Y.; Zeng, X. C.; Yang, J. L. Half-metallicity in hybrid graphene/boron nitride nanoribbons with dihydrogenated edges. J. Phys. Chem. C 2011, 115, 9442–9450.

    Article  CAS  Google Scholar 

  58. He, J.; Chen, K. Q.; Fan, Z. Q.; Tang, L. M.; Hu, W. P. Transition from insulator to metal induced by hybridized connection of graphene and boron nitride nanoribbons. Appl. Phys. Lett. 2010, 97, 193305.

    Article  Google Scholar 

  59. Du, A. J.; Chen, Y.; Zhu, Z. H.; Amal, R.; Lu, G. Q.; Smith, S. C. Dots versus antidots: Computational exploration of structure, magnetism, and half-metallicity in boron-nitride nanostructures. J. Am. Chem. Soc. 2009, 131, 17354–17359.

    Article  CAS  Google Scholar 

  60. Zhang, Z. H.; Guo, W. L. Tunable ferromagnetic spin ordering in boron nitride nanotubes with topological fluorine adsorption. J. Am. Chem. Soc. 2009, 131, 6874–6879.

    Article  CAS  Google Scholar 

  61. Chen, W.; Li, Y. F.; Yu, G. T.; Li, C. Z.; Zhang, S. B. B.; Zhou, Z.; Chen, Z. F. Hydrogenation: A simple approach to realize semiconductor-half-metal-metal transition in boron nitride nanoribbons. J. Am. Chem. Soc. 2010, 132, 1699–1705.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhui Duan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, B., Lee, H., Gu, BL. et al. Edge stability of boron nitride nanoribbons and its application in designing hybrid BNC structures. Nano Res. 5, 62–72 (2012). https://doi.org/10.1007/s12274-011-0185-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0185-y

Keywords

Navigation