Nano Research

, Volume 4, Issue 12, pp 1261–1267 | Cite as

Surface dislocation nucleation mediated deformation and ultrahigh strength in sub-10-nm gold nanowires

Research Article

Abstract

The plastic deformation and the ultrahigh strength of metals at the nanoscale have been predicted to be controlled by surface dislocation nucleation. In situ quantitative tensile tests on individual 〈111〉 single crystalline ultrathin gold nanowires have been performed and significant load drops observed in stress-strain curves suggest the occurrence of such dislocation nucleation. High-resolution transmission electron microscopy (HRTEM) imaging and molecular dynamics simulations demonstrated that plastic deformation was indeed initiated and dominated by surface dislocation nucleation, mediating ultrahigh yield and fracture strength in sub-10-nm gold nanowires. Open image in new window

Keywords

Nanowires in situ transmission electron microscope (TEM) mechanical characterization dislocation nucleation plasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2011_177_MOESM1_ESM.pdf (366 kb)
Supplementary material, approximately 365 KB.

Supplementary material, approximately 5.33 MB.

Supplementary material, approximately 1.05 MB.

Supplementary material, approximately 4.81 MB.

References

  1. [1]
    Greer, J. R.; Nix, W. D. Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 2006, 73, 245410.CrossRefGoogle Scholar
  2. [2]
    Uchic, M. D.; Dimiduk, M. D.; Florando, J. N.; Nix, W. D. Sample dimensions influence strength and crystal plasticity. Science 2004, 305, 986–989.CrossRefGoogle Scholar
  3. [3]
    Shan, Z. W.; Mishra, R. K.; Asif, S. A. S.; Warren, O. L.; Minor, A. M. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 2008, 7, 115–119.CrossRefGoogle Scholar
  4. [4]
    Rabkin, E.; Srolovitz, D. J. Onset of plasticity in gold nanopillar compression. Nano Lett. 2007, 7, 101–107.CrossRefGoogle Scholar
  5. [5]
    Zhu, T.; Li, J.; Samanta, A.; Leach, A.; Gall, K. Temperature and strain rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 2008, 100, 025502.CrossRefGoogle Scholar
  6. [6]
    Cimalla, V.; Röhlig, C. C.; Pezoldt, J.; Niebelschütz, M.; Ambacher, O.; Brückner, K.; Hein, M.; Weber, J.; Milenkovic, S.; Smith, A. J.; Hassel, A. W. Nanomechanics of single crystalline tungsten nanowires. J. Nanomater. 2008, 2008, 638947.CrossRefGoogle Scholar
  7. [7]
    Wu, B.; Heidelberg, A.; Boland, J. J. Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 2005, 4, 525–529.CrossRefGoogle Scholar
  8. [8]
    Wang, M. S.; Kaplan-Ashiri, I.; Wei, X.; Rosentsveig, R.; Wagner, H.; Tenne, R.; Peng, L. In situ TEM measurements of the mechanical properties and behavior of WS2 nanotubes. Nano Res. 2008, 1, 22–31.CrossRefGoogle Scholar
  9. [9]
    Hsin, C. L.; Mai, W. J.; Gu, Y. D.; Gao, Y. F.; Huang, C. T.; Liu, Y. Z.; Chen, L. J.; Wang, Z. L. Elastic properties and buckling of silicon nanowires. Adv. Mater. 2008, 20, 3919–3923.CrossRefGoogle Scholar
  10. [10]
    Zhu, Y.; Moldovan, N.; Espinosa, H. D. A microelectro-mechanical load sensor for in situ electron and X-ray microscopy tensile testing of nanostructures. Appl. Phys. Lett. 2005, 86, 013506.CrossRefGoogle Scholar
  11. [11]
    Zhu, Y.; Espinosa, H. D. An electromechanical material testing system for in situ electron microscopy and applications. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 14503–14508.CrossRefGoogle Scholar
  12. [12]
    Peng, B.; Locascio, M.; Zapol, P.; Li, S. Y.; Mielke, S. L.; Schatz, G. C.; Espinosa, H. D. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nanotechnol. 2008, 3, 626–631.CrossRefGoogle Scholar
  13. [13]
    Lu, Y.; Ganesan, Y.; Lou, J. A multi-step method for in situ mechanical characterization of 1-D nanostructures using a novel micromechanical device. Exp. Mech. 2010, 50, 47–54.CrossRefGoogle Scholar
  14. [14]
    Ganesan, Y.; Lu, Y.; Peng, C.; Lu, H.; Ballarini, R.; Lou, J. Development and application of a novel microfabricated device for the in situ tensile testing of 1-D nanomaterials. J. Microelectromech. Syst. 2010, 19, 675–682.CrossRefGoogle Scholar
  15. [15]
    Eppell, S. J.; Smith, B. N.; Kahn, H.; Ballarini, R. Nano measurements with micro-devices: Mechanical properties of hydrated collagen fibrils. J. R. Soc. Interface 2006, 3, 117–121.CrossRefGoogle Scholar
  16. [16]
    Haque, M. A.; Saif, M. T. A. Deformation mechanisms in free-standing nanoscale thin films: A quantitative in situ transmission electron microscope study. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 6335–6340.CrossRefGoogle Scholar
  17. [17]
    Guo, H.; Yan, P. F.; Wang, Y. B.; Tan, J.; Zhang, Z. F.; Sui, M. L.; Ma, E. Tensile ductility and necking of metallic glass. Nat. Mater. 2007, 6, 735–739.CrossRefGoogle Scholar
  18. [18]
    Agrait, N.; Rubio, G.; Vieira, S. Plastic deformation of nanometer-scale gold connective necks. Phys. Rev. Lett. 1995, 74, 3995–3998.CrossRefGoogle Scholar
  19. [19]
    Kizuka, T. Atomistic visualization of deformation in gold. Phys. Rev. B 1998, 57, 11158–11163.CrossRefGoogle Scholar
  20. [20]
    Zheng, H.; Cao, A. J.; Weinberger, C. R.; Huang, J. Y.; Du, K.; Wang, J. B.; Ma, Y.; Xia, Y. N.; Mao, S. X. Discrete plasticity in sub-10-nm-sized gold crystals. Nat. Commun. 2010, 1, 1–8.CrossRefGoogle Scholar
  21. [21]
    Wang, C.; Hu, Y. J.; Lieber, C. M.; Sun, S. H. Ultrathin Au nanowires and their transport properties. J. Am. Chem. Soc. 2008, 130, 8902–8903.CrossRefGoogle Scholar
  22. [22]
    Zheng K.; Wang, C. C.; Cheng, Y. Q.; Yue, Y. H.; Han, X. D.; Zhang, Z.; Shan, Z. W.; Mao, S. X.; Ye, M. M.; Yin, Y. D.; Ma, E. Electron-beam-assisted superplastic shaping of nanoscale amorphous silica. Nat. Commun. 2010, 1, 1–8.CrossRefGoogle Scholar
  23. [23]
    Howatson, A. M.; Lund, P. G.; Todd, J. D. Engineering Tables and Data, 2nd ed.; Chapman and Hall: London, 1991; p 41.Google Scholar
  24. [24]
    Zhu, T.; Li, J.; Ogata, S.; Yip, S. Mechanics of ultra-strength materials. MRS Bull. 2009, 34, 167–172.CrossRefGoogle Scholar
  25. [25]
    Rubio-Bollinger, G.; Bahn, S. R.; Agrait, N.; Jacobsen, K. W.; Vieira, S. Mechanical properties and formation mechanisms of a wire of single gold atoms. Phys. Rev. Lett. 2001, 87, 026101.CrossRefGoogle Scholar
  26. [26]
    Ogata, S.; Li, J.; Hirosaki, N.; Shibutani, Y; Yip, S. Ideal shear strain of metals and ceramics. Phys. Rev. B 2004, 70, 104104.CrossRefGoogle Scholar
  27. [27]
    Cai, J.; Ye, Y. Y. Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. Phys. Rev. B 1996, 54, 8398–8410.CrossRefGoogle Scholar
  28. [28]
    Mei, J.; Davenport, J. W.; Fernando, G. W. Analytic embedded-atom potentials for fcc metals-application to liquid and solid copper. Phys Rev B 1991, 43, 4653–4658.CrossRefGoogle Scholar
  29. [29]
    Grochola, G.; Russo, S. P.; Snook, I. K. On fitting a gold embedded atom method potential using the force matching method. J. Chem. Phys. 2005, 123, 204719.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Mechanical Engineering & Materials ScienceRice UniversityHoustonUSA
  2. 2.Department of Mining & Materials EngineeringMcGill UniversityMontrealCanada
  3. 3.Center for Integrated Nanotechnologies (CINT)Sandia National LaboratoriesAlbuquerqueUSA
  4. 4.Department of Materials Science and EngineeringMITCambridgeUSA

Personalised recommendations