Skip to main content
Log in

Modeling frequency- and temperature-invariant dissipative behaviors of randomly entangled carbon nanotube networks under cyclic loading

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Recent experiments have shown that entangled networks of carbon nanotubes exhibit temperature- and frequency-invariant dissipative behaviors under cyclic loading. We have performed coarse-grained molecular dynamics simulations which show that these intriguing phenomena can be attributed to the unstable attachments/detachments between individual carbon nanotubes induced by van der Waals interactions. We show that this behavior can be described by a triboelastic constitutive model. This study highlights the promise of carbon nanomaterials for energy absorption and dissipation under extreme conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, M.; Futaba, D. N.; Yamada, T.; Yumura, M.; Hata, K. Carbon nanotubes with temperature-invariant viscoelasticity from −196° to 1000 °C. Science 2010, 330, 1364–1368.

    Article  CAS  Google Scholar 

  2. Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 1996, 381, 678–680.

    Article  CAS  Google Scholar 

  3. Moulton, S. E.; Minett, A. I.; Wallace, G. G. Carbon nanotube based electronic and electrochemical sensors. Sensor Lett. 2005, 3, 183–193.

    Article  CAS  Google Scholar 

  4. Sazonova, V.; Yaish, Y.; Üstünel, H.; Roundy, D.; Arias, T. A.; McEuen, P. L. A tunable carbon nanotube electromechanical oscillator. Nature 2004, 431, 284–287.

    Article  CAS  Google Scholar 

  5. Cao, A. Y.; Dickrell, P. L.; Sawyer, W. G.; Ghasemi-Nejhad, M. N.; Ajayan, P. M. Super-compressible foamlike carbon nanotube films. Science 2005, 310, 1307–1310.

    Article  CAS  Google Scholar 

  6. Yap, H. W.; Lakes, R. S.; Carpick, R. W. Negative stiffness and enhanced damping of individual multiwalled carbon nanotubes. Phys. Rev. B 2008, 77, 045423.

    Article  Google Scholar 

  7. Zhang, Q.; Lu, Y. C.; Du, F.; Dai, L.; Baur, J.; Foster, D. C. Viscoelastic creep of vertically aligned carbon nanotubes. J. Phys. D Appl. Phys. 2010, 43, 315401.

    Article  Google Scholar 

  8. Pathak, S.; Cambaz, Z. G.; Kalidindi, S. R.; Swadener, J. G.; Gogotsi, Y. Viscoelasticity and high buckling stress of dense carbon nanotube brushes. Carbon 2009, 47, 1969–1976.

    Article  CAS  Google Scholar 

  9. McCarter, C. M.; Richards, R. F.; Mesarovic, S. D.; Richards, C. D.; Bahr, D. F.; McClain, D.; Jiao, J. Mechanical compliance of photolithographically defined vertically aligned carbon nanotube turf. J. Mater. Sci. 2006, 41, 7872–7878.

    Article  CAS  Google Scholar 

  10. Qu, L. T; Dai, L. M; Stone, M.; Xia, Z. H; Wang Z. L. Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science 2008, 322, 238–242.

    Article  CAS  Google Scholar 

  11. Buehler, M. J. Mesoscale modeling of mechanics of carbon nanotubes: Self-assembly, self-folding, and fracture. J. Mater. Res. 2006, 21, 2855–2869.

    Article  CAS  Google Scholar 

  12. Cranford, S.; Sen, D.; Buehler, M. J. Meso-origami: Folding multilayer graphene sheets. Appl. Phys. Lett. 2009, 95, 123121.

    Article  Google Scholar 

  13. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.

    Article  CAS  Google Scholar 

  14. Stuart, S. J.; Tutein, A. B.; Harrison, J. A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 2000, 112, 6472–6486.

    Article  CAS  Google Scholar 

  15. Jones, J. E. On the determination of molecular fields. II. From the equation of state of a gas. Proc. R. Soc. Lond. A 1924, 106, 463–477.

    Article  CAS  Google Scholar 

  16. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graphics 1996, 14, 33–38.

    Article  CAS  Google Scholar 

  17. Gao, H. J.; Yao, H. M. Shape insensitive optimal adhesion of nanoscale fibrillar structures. P. Natl. Acad. Sci. USA 2004, 101, 7851–7856.

    Article  CAS  Google Scholar 

  18. Turner, D. M. A triboelastic model for the mechanical behaviour of rubber. Plast. Rubber Proc. Appl. 1988, 9, 197–201.

    CAS  Google Scholar 

  19. Coveney, V. A.; Johnson, D. E.; Turner, D. M. A triboelastic model for the cyclic mechanical behavior of filled vulcanizates. Rubber Chem. Technol. 1995, 68, 660–670.

    Article  CAS  Google Scholar 

  20. Jenkins, G. M. Analysis of the stress-strain relationships in reactor grade graphite. J. Appl. Phys. 1962, 13, 30–32.

    CAS  Google Scholar 

  21. Malovrh, B.; Gandhi, F. Mechanism-based phenomenological models for the pseudoelastic hysteresis behavior of shape memory alloys. J. Inter. Mat. Syst. Str. 2001, 12, 21–30.

    Google Scholar 

  22. Misra, A.; Greer, J. R.; Daraio, C. Strain rate effects in the mechanical response of polymer-anchored carbon nanotube foams. Adv. Mater. 2009, 21, 334–338.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huajian Gao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., He, P. & Gao, H. Modeling frequency- and temperature-invariant dissipative behaviors of randomly entangled carbon nanotube networks under cyclic loading. Nano Res. 4, 1191–1198 (2011). https://doi.org/10.1007/s12274-011-0169-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0169-y

Keywords

Navigation