Nano Research

, Volume 4, Issue 12, pp 1191–1198 | Cite as

Modeling frequency- and temperature-invariant dissipative behaviors of randomly entangled carbon nanotube networks under cyclic loading

Research Article

Abstract

Recent experiments have shown that entangled networks of carbon nanotubes exhibit temperature- and frequency-invariant dissipative behaviors under cyclic loading. We have performed coarse-grained molecular dynamics simulations which show that these intriguing phenomena can be attributed to the unstable attachments/detachments between individual carbon nanotubes induced by van der Waals interactions. We show that this behavior can be described by a triboelastic constitutive model. This study highlights the promise of carbon nanomaterials for energy absorption and dissipation under extreme conditions.

Keywords

Carbon nanotubes unstable detachments and attachments van der Waals interactions triboelastic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2011_169_MOESM1_ESM.avi (12.5 mb)
Supplementary material, approximately 12.5 MB.
12274_2011_169_MOESM2_ESM.avi (2.2 mb)
Supplementary material, approximately 2.24 MB.
12274_2011_169_MOESM3_ESM.avi (664 kb)
Supplementary material, approximately 664 KB.
12274_2011_169_MOESM4_ESM.pdf (324 kb)
Supplementary material, approximately 323 KB.

References

  1. [1]
    Xu, M.; Futaba, D. N.; Yamada, T.; Yumura, M.; Hata, K. Carbon nanotubes with temperature-invariant viscoelasticity from −196° to 1000 °C. Science 2010, 330, 1364–1368.CrossRefGoogle Scholar
  2. [2]
    Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 1996, 381, 678–680.CrossRefGoogle Scholar
  3. [3]
    Moulton, S. E.; Minett, A. I.; Wallace, G. G. Carbon nanotube based electronic and electrochemical sensors. Sensor Lett. 2005, 3, 183–193.CrossRefGoogle Scholar
  4. [4]
    Sazonova, V.; Yaish, Y.; Üstünel, H.; Roundy, D.; Arias, T. A.; McEuen, P. L. A tunable carbon nanotube electromechanical oscillator. Nature 2004, 431, 284–287.CrossRefGoogle Scholar
  5. [5]
    Cao, A. Y.; Dickrell, P. L.; Sawyer, W. G.; Ghasemi-Nejhad, M. N.; Ajayan, P. M. Super-compressible foamlike carbon nanotube films. Science 2005, 310, 1307–1310.CrossRefGoogle Scholar
  6. [6]
    Yap, H. W.; Lakes, R. S.; Carpick, R. W. Negative stiffness and enhanced damping of individual multiwalled carbon nanotubes. Phys. Rev. B 2008, 77, 045423.CrossRefGoogle Scholar
  7. [7]
    Zhang, Q.; Lu, Y. C.; Du, F.; Dai, L.; Baur, J.; Foster, D. C. Viscoelastic creep of vertically aligned carbon nanotubes. J. Phys. D Appl. Phys. 2010, 43, 315401.CrossRefGoogle Scholar
  8. [8]
    Pathak, S.; Cambaz, Z. G.; Kalidindi, S. R.; Swadener, J. G.; Gogotsi, Y. Viscoelasticity and high buckling stress of dense carbon nanotube brushes. Carbon 2009, 47, 1969–1976.CrossRefGoogle Scholar
  9. [9]
    McCarter, C. M.; Richards, R. F.; Mesarovic, S. D.; Richards, C. D.; Bahr, D. F.; McClain, D.; Jiao, J. Mechanical compliance of photolithographically defined vertically aligned carbon nanotube turf. J. Mater. Sci. 2006, 41, 7872–7878.CrossRefGoogle Scholar
  10. [10]
    Qu, L. T; Dai, L. M; Stone, M.; Xia, Z. H; Wang Z. L. Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science 2008, 322, 238–242.CrossRefGoogle Scholar
  11. [11]
    Buehler, M. J. Mesoscale modeling of mechanics of carbon nanotubes: Self-assembly, self-folding, and fracture. J. Mater. Res. 2006, 21, 2855–2869.CrossRefGoogle Scholar
  12. [12]
    Cranford, S.; Sen, D.; Buehler, M. J. Meso-origami: Folding multilayer graphene sheets. Appl. Phys. Lett. 2009, 95, 123121.CrossRefGoogle Scholar
  13. [13]
    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.CrossRefGoogle Scholar
  14. [14]
    Stuart, S. J.; Tutein, A. B.; Harrison, J. A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 2000, 112, 6472–6486.CrossRefGoogle Scholar
  15. [15]
    Jones, J. E. On the determination of molecular fields. II. From the equation of state of a gas. Proc. R. Soc. Lond. A 1924, 106, 463–477.CrossRefGoogle Scholar
  16. [16]
    Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graphics 1996, 14, 33–38.CrossRefGoogle Scholar
  17. [17]
    Gao, H. J.; Yao, H. M. Shape insensitive optimal adhesion of nanoscale fibrillar structures. P. Natl. Acad. Sci. USA 2004, 101, 7851–7856.CrossRefGoogle Scholar
  18. [18]
    Turner, D. M. A triboelastic model for the mechanical behaviour of rubber. Plast. Rubber Proc. Appl. 1988, 9, 197–201.Google Scholar
  19. [19]
    Coveney, V. A.; Johnson, D. E.; Turner, D. M. A triboelastic model for the cyclic mechanical behavior of filled vulcanizates. Rubber Chem. Technol. 1995, 68, 660–670.CrossRefGoogle Scholar
  20. [20]
    Jenkins, G. M. Analysis of the stress-strain relationships in reactor grade graphite. J. Appl. Phys. 1962, 13, 30–32.Google Scholar
  21. [21]
    Malovrh, B.; Gandhi, F. Mechanism-based phenomenological models for the pseudoelastic hysteresis behavior of shape memory alloys. J. Inter. Mat. Syst. Str. 2001, 12, 21–30.Google Scholar
  22. [22]
    Misra, A.; Greer, J. R.; Daraio, C. Strain rate effects in the mechanical response of polymer-anchored carbon nanotube foams. Adv. Mater. 2009, 21, 334–338.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.School of Aerospace Engineering and Applied MechanicsTongji UniversityShanghaiChina
  2. 2.School of EngineeringBrown UniversityProvidenceUSA

Personalised recommendations