Skip to main content
Log in

Aqueous-phase synthesis of Ag-TiO2-reduced graphene oxide and Pt-TiO2-reduced graphene oxide hybrid nanostructures and their catalytic properties

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We demonstrate an aqueous solution method for the synthesis of a Ag-TiO2-reduced graphene oxide (rGO) hybrid nanostructure (NS) in which the Ag and TiO2 particles are well dispersed on the rGO sheet. The Ag-TiO2-rGO NS was then used as a template to synthesize Pt-TiO2-rGO NS. The resulting hybrid NSs were characterized by transmission electron microscopy (TEM), high-resolution TEM (HRTEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy, Raman spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), and catalytic studies. It was found that TiO2-rGO, Ag-TiO2-rGO and Pt-TiO2-rGO NSs all show catalytic activity for the reduction of p-nitrophenol to p-aminophenol by NaBH4, and that Pt-TiO2-rGO NS exhibits the highest catalytic activity as well as excellent stability and easy recyclability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.

    Article  CAS  Google Scholar 

  2. Garaj, S.; Hubbard, W.; Reina, A.; Kong, J.; Branton, D.; Golovchenko, J. A. Graphene as a subnanometre trans-electrode membrane. Nature 2010, 467, 190–193.

    Article  CAS  Google Scholar 

  3. Du, X.; Skachko, I.; Duerr, F.; Luican, A.; Andrei, E. Y. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 2010, 462, 192–195.

    Article  Google Scholar 

  4. Liu, Z.; Robinson, J. T.; Sun, X. M.; Dai, H. J. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 2008, 130, 10876–10877.

    Article  CAS  Google Scholar 

  5. Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.

    Article  CAS  Google Scholar 

  6. Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; Sood, A. K. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.

    Article  CAS  Google Scholar 

  7. Martin, J.; Akerman, N.; Ulbricht, G.; Lohmann, T.; Smet, J. H.; Von Klitzing, K.; Yacoby, A. Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 2008, 4, 144–148.

    Article  CAS  Google Scholar 

  8. Stampfer, C.; Schurtenberger, E.; Molitor, F.; Güttinger, J.; Ihn, T.; Ensslin, K. Tunable graphene single electron transistor. Nano Lett. 2008, 8, 2378–2383.

    Article  CAS  Google Scholar 

  9. Lee, C. G.; Park, S.; Ruoff, R. S.; Dodabalapur, A. Integration of reduced graphene oxide into organic field-effect transistors as conducting electrodes and as a metal modification layer. Appl. Phys. Lett. 2009, 95, 023304.

    Article  Google Scholar 

  10. Wang, X.; Zhi, L. J.; Mullen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323–327.

    Article  CAS  Google Scholar 

  11. Yang, N.; Zhai, J.; Wang, D.; Chen, Y.; Jiang, L. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cell. ACS Nano 2010, 4, 887–894.

    Article  CAS  Google Scholar 

  12. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.

    Article  CAS  Google Scholar 

  13. Lee, J. K.; Smith, K. B.; Hayner, C. M.; Kung, H. H. Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chem. Comm. 2010, 46, 2025–2027.

    Article  CAS  Google Scholar 

  14. Reddy, A. L. M.; Srivastava, A.; Gowda, S. R.; Gullapalli, H.; Dubey, M.; Ajayan, P. M. Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 2010, 4, 6337–6342.

    Article  CAS  Google Scholar 

  15. Wu, Z. -S.; Ren, W.; Wen, L.; Gao, L.; Zhao, J.; Chen, Z.; Zhou, G.; Li, F.; Cheng, H. -M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187–3194.

    Article  CAS  Google Scholar 

  16. Avouris, P.; Chen, Z.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.

    Article  CAS  Google Scholar 

  17. Chen, J. -H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 2008, 3, 206–209.

    Article  CAS  Google Scholar 

  18. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based vomposite materials. Nature 2006, 442, 282–286.

    Article  CAS  Google Scholar 

  19. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.

    Article  CAS  Google Scholar 

  20. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

    Article  CAS  Google Scholar 

  21. Williams, G.; Seger, B.; Kamat, P. V. TiO2-graphene nano-composites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2008, 2, 1487–1491.

    Article  CAS  Google Scholar 

  22. Zhang, H.; Lv, X.; Li, Y.; Li, J. P25-graphene composite as a high performance photocatalyst. ACS Nano 2010, 4, 380–386.

    Article  CAS  Google Scholar 

  23. Liang, Y.; Wang, H.; Casalongue, H. S.; Chen, Z., Dai, H. TiO2 nanocrystals grown on graphene as advanced photo-catalytic hybrid materials. Nano Res. 2010, 3, 701–705.

    Article  CAS  Google Scholar 

  24. Joo, E. J.; Okata, T.; Akita, T.; Kohyama, M.; Nakamura, J.; Honma, I. Enhanced electrocatalytic activity of Pt sub-nanoclusters on graphene nanosheet surface. Nano Lett. 2009, 9, 2255–2259.

    Article  Google Scholar 

  25. Cao, A.; Liu, Z.; Chu, S.; Wu, M.; Ye, Z.; Cai, Z.; Chang, Y.; Wang, S.; Gong, Q.; Liu, Y. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials. Adv. Mater. 2010, 22, 103–106.

    Article  CAS  Google Scholar 

  26. Guo, S.; Wen, D; Zhai, Y.; Dong, S.; Wang, E. Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: One-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 2010, 4, 3959–3968.

    Article  CAS  Google Scholar 

  27. Zhou, Y. -G.; Chen, J. -J.; Wang, F. -B.; Sheng, Z. -H.; Xia, X. -H. A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells. Chem. Commun. 2010, 46, 5951–5953.

    Article  CAS  Google Scholar 

  28. Guo, S.; Dong, S.; Wang, E. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: Facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 2010, 4, 547–555.

    Article  CAS  Google Scholar 

  29. Wang, P.; Zhai, Y.; Wang, D.; Dong, S. Synthesis of reduced graphene oxide-anatase TiO2 nanocomposite and its improved photo-induced charge transfer properties. Nanoscale 2011, 3, 1640–1645.

    Article  CAS  Google Scholar 

  30. Ung, T.; Giersig, M.; Dunstan, D.; Mulvaney, P. Spectro-electrochemistry of colloidal silver. Langmuir 1997, 13, 1773–1782.

    Article  CAS  Google Scholar 

  31. Lin, W.; Warren, T. H.; Nuzzo, R. G.; Girolami, G. S. Surface-selective deposition of palladium and silver films from metal-organic precursors: A novel metal-organic chemical vapor deposition redox transmetalation process. J. Am. Chem. Soc. 1993, 115, 11644–116645.

    Article  CAS  Google Scholar 

  32. Poter, L. A., Jr.; Choi, H. C.; Ribbe, A. E.; Buriak, J. M. Controlled electroless deposition of noble metal nanoparticle films on germanium surfaces. Nano Lett. 2002, 2, 1067–1071.

    Article  Google Scholar 

  33. Sun, Y.; Xia, Y. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc. 2004, 126, 3892–3901.

    Article  CAS  Google Scholar 

  34. Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145.

    Article  CAS  Google Scholar 

  35. Mei, Yu.; Sharma, G.; Lu, Y.; Ballauff, M.; Drechsler, M.; Irrgang, T.; Kempe, R. High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes. Langmuir 2005, 21, 12229–12234.

    Article  CAS  Google Scholar 

  36. Mei, Y.; Lu, Y.; Ballauff, M.; Drechsler, M. Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core-shell microgels. Chem. Mater. 2007, 19, 1062–1069.

    Article  CAS  Google Scholar 

  37. Schrinner, M.; Ballauff, M.; Talmon, Y.; Kauffmann, Y.; Thun, J.; Möller, M.; Breu, J. Single nanocrystals of platinum prepared by partial dissolution of Au-Pt nanoalloys. Science 2009, 323, 617–620.

    Article  CAS  Google Scholar 

  38. Zeng, J.; Zhang, Q.; Chen, J.; Xia, Y. A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. Nano Lett. 2010, 10, 30–35.

    Article  CAS  Google Scholar 

  39. Yu, T.; Zeng, J.; Lim, B.; Xia, Y. Aqueous-phase synthesis of Pt/CeO2 hybrid nanostructures and their catalytic properties. Adv. Mater. 2010, 22, 5188–5192.

    Article  CAS  Google Scholar 

  40. Narayanan, R.; El-Sayed, M. A. Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP-palladium nanoparticles. J. Am. Chem. Soc. 2003, 125, 8340–8347.

    Article  CAS  Google Scholar 

  41. Saramat, A.; Thormählen, P.; Skoglundh, M.; Attard, G. S.; Palmqvist, A. E. C. Catalytic oxidation of CO over ordered mesoporous platinum. J. Catal. 2008, 253, 253–260.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojun Dong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Han, L., Zhu, C. et al. Aqueous-phase synthesis of Ag-TiO2-reduced graphene oxide and Pt-TiO2-reduced graphene oxide hybrid nanostructures and their catalytic properties. Nano Res. 4, 1153–1162 (2011). https://doi.org/10.1007/s12274-011-0165-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0165-2

Keywords

Navigation