Skip to main content
Log in

From proton conductive nanowires to nanofuel cells: A powerful candidate for generating electricity for self-powered nanosystems

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The likely goal of nanotechnology is the integration of individual nanodevices into a nanosystem, which includes the nanodevice(s), power harvesting unit, data processing logic system, and possibly wireless communication unit. A nanosystem requires a nanoscale power source to make the entire package extremely small and high performance. The nanofuel and nanobiofuel cells developed here represent a new self-powering approach in nanotechnology, and their power output is high enough to drive nanodevices for performing self-powered sensing. This study shows the feasibility of building self-powered nanosystems for biological sciences, environmental monitoring, defense technology and even personal electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294–1301.

    Article  CAS  Google Scholar 

  2. Bai, X. D.; Gao, P. X.; Wang, Z. L.; Wang, E. G. Dual-mode mechanical resonance of individual ZnO nanobelts. Appl. Phys. Lett. 2003, 82, 4806–4808.

    Article  CAS  Google Scholar 

  3. Zheng, G. F.; Lu, W.; Jin, S.; Lieber, C. M. Synthesis and fabrication of high-performance n-type silicon nanowire transistors. Adv. Mater. 2004, 16, 1890–1893.

    Article  CAS  Google Scholar 

  4. Wu, W. Z.; Wei, Y. G.; Wang, Z. L. Strain-gated piezotronic logic nanodevices. Adv. Mater. 2010, 22, 4711–4715.

    Article  CAS  Google Scholar 

  5. Gross, S.; Gilead, A.; Scherz, A.; Neeman, M.; Salomon, Y. Monitoring photodynamic therapy of solid tumors online by BOLD-contrast MRI. Nat. Med. 2003, 9, 1327–1331.

    Article  CAS  Google Scholar 

  6. Duan, X. F.; Huang, Y.; Agarwal, R.; Lieber, C. M. Singlenanowire electrically driven lasers. Nature 2003, 421, 241–245.

    Article  CAS  Google Scholar 

  7. Wang, Z. L. Self-powered nanotech-nanosize machines need still tinier power plants. Sci. Am. 2008, 298, 82–87.

    Article  Google Scholar 

  8. Qin, Y.; Wang, X. D.; Wang, Z. L. Microfibre-nanowire hybrid structure for energy scavenging. Nature 2008, 451, 809–813.

    Article  CAS  Google Scholar 

  9. Xu, S.; Qin, Y.; Xu, C.; Wei, Y. G.; Yang, R. S.; Wang, Z. L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366–373.

    Article  CAS  Google Scholar 

  10. Yang, R. S.; Qin, Y.; Dai, L. M.; Wang, Z. L. Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 2009, 4, 34–39.

    Article  CAS  Google Scholar 

  11. Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105.

    Article  CAS  Google Scholar 

  12. Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

    Article  CAS  Google Scholar 

  13. Zhu, G. A.; Yang, R. S.; Wang, S. H.; Wang, Z. L. Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 2010, 10, 3151–3155.

    Article  CAS  Google Scholar 

  14. Hu, Y. F.; Zhang, Y.; Xu, C.; Zhu, G. A.; Wang, Z. L. Highoutput nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display. Nano Lett. 2010, 10, 5025–5031.

    Article  CAS  Google Scholar 

  15. Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–889.

    Article  CAS  Google Scholar 

  16. Zhang, L.; Pan, C. F.; Zhu, J. Growth mechanism and optimized parameters to synthesize Nafion-115 nanowire arrays with anodic aluminium oxide membranes as templates. Chinese Phys. Lett. 2008, 25, 3056–3058.

    Article  CAS  Google Scholar 

  17. Pan, C. F.; Zhang, L.; Zhu, J.; Luo, J.; Cheng, Z. D.; Wang, C. Surface decoration of anodic aluminium oxide in synthesis of Nafion(R)-115 nanowire arrays. Nanotechnology 2007, 18, 015302.

    Article  Google Scholar 

  18. Zhang, L.; Pan, C. F.; Zhu, J.; Wang, C. Synthesis and characterization of Nafion(R)-115 nanowire arrays. Nanotechnology 2005, 16, 2242–2244.

    Article  CAS  Google Scholar 

  19. Wu, H.; Lin, D. D.; Zhang, R.; Pan, W. Oriented nanofibers by a newly modified electrospinning method. J. Am. Ceram. Soc. 2007, 90, 632–634.

    Article  CAS  Google Scholar 

  20. Wu, H.; Zhang, R.; Liu, X. X.; Lin, D. D.; Pan, W. Electrospinning of Fe, Co, and Ni nanofibers: synthesis, assembly, and magnetic properties. Chem. Mater. 2007, 19, 3506–3511.

    Article  CAS  Google Scholar 

  21. Li, D.; Xia, Y. N. Electrospinning of nanofibers: reinventing the wheel? Adv. Mater. 2004, 16, 1151–1170.

    Article  CAS  Google Scholar 

  22. Pan, C. F.; Fang, Y.; Wu, H.; Ahmad, M.; Luo, Z. X.; Li, Q.; Xie, J. B.; Yan, X. X.; Wu, L. H.; Wang, Z. L.; Zhu, J. Generating electricity from biofluid with a nanowire-based biofuel cell for self-powered nanodevices. Adv. Mater. 2010, 22, 5388–5392.

    Article  CAS  Google Scholar 

  23. Chen, H.; Snyder, J. D.; Elabd, Y. A. Electrospinning and solution properties of Nafion and poly(acrylic acid). Macromolecules 2008, 41, 128–135.

    Article  CAS  Google Scholar 

  24. Dong, B.; Gwee, L.; Salas-de la Cruz, D.; Winey, K. I.; Elabd, Y. A. Super proton conductive high-purity Nafion nanofibers. Nano Lett. 2010, 10, 3785–3790.

    Article  CAS  Google Scholar 

  25. Pan, C. F.; Wu, H.; Wang, C.; Wang, B.; Zhang, L.; Chen, Z. D.; Hu, P.; Pan, W.; Zhou, Z. Y.; Yang, X.; Zhu, J. Nanowire-based high performance “micro fuel cell”: one nanowire, one fuel cell. Adv. Mater. 2008, 20, 1644–1648.

    Article  CAS  Google Scholar 

  26. Gruger, A.; Regis, A.; Schmatko, T.; Colomban, P. Nanostructure of Nafion (R) membranes at different states of hydration-an IR and Raman study. Vib. Spectrosc. 2001, 26, 215–225.

    Article  CAS  Google Scholar 

  27. Alberti, G.; Casciola, M. Solid state protonic conductors, present main applications and future prospects. Solid State Ionics 2001, 145, 3–16.

    Article  CAS  Google Scholar 

  28. Ha, S.; Adams, B.; Masel, R. I. A miniature air breathing direct formic acid fuel cell. J. Power Sources 2004, 128, 119–124.

    Article  CAS  Google Scholar 

  29. Rubatat, L.; Rollet, A. L.; Gebel, G.; Diat, O. Evidence of elongated polymeric aggregates in Nafion. Macromolecules 2002, 35, 4050–4055.

    Article  CAS  Google Scholar 

  30. Delumleywoodyear, T.; Rocca, P.; Lindsay, J.; Dror, Y.; Freeman, A.; Heller, A. A. Polyacrylamide-based redox polymer for connecting redox centers of enzymes to electrodes. Anal. Chem. 1995, 67, 1332–1338.

    Article  CAS  Google Scholar 

  31. Trudeau, F.; Daigle, F.; Leech, D. Reagentless mediated laccase electrode for the detection of enzyme modulators. Anal. Chem. 1997, 69, 882–886.

    Article  CAS  Google Scholar 

  32. Barton, S. C.; Kim, H. H.; Binyamin, G.; Zhang, Y. C.; Heller, A. The “wired” laccase cathode: High current density electroreduction of O-2 to water at +0.7 V (NHE) at pH 5. J. Am. Chem. Soc. 2001, 123, 5802–5803.

    Article  CAS  Google Scholar 

  33. Yang, R. S.; Qin, Y.; Li, C.; Dai, L. M.; Wang, Z. L. Characteristics of output voltage and current of integrated nanogenerators. Appl. Phys. Lett. 2009, 94, 022905.

    Article  Google Scholar 

  34. Chen, T.; Barton, S. C.; Binyamin, G.; Gao, Z. Q.; Zhang, Y. C.; Kim, H. H.; Heller, A. A miniature biofuel cell. J. Am. Chem. Soc. 2001, 123, 8630–8631.

    Article  CAS  Google Scholar 

  35. Coman, V.; Ludwig, R.; Harreither, W.; Haltrich, D.; Gorton, L.; Ruzgas, T.; Shleev, S. A direct electron transfer-based glucose/oxygen biofuel cell operating in human serum. Fuel Cells 2010, 10, 9–16.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, C., Luo, J. & Zhu, J. From proton conductive nanowires to nanofuel cells: A powerful candidate for generating electricity for self-powered nanosystems. Nano Res. 4, 1099–1109 (2011). https://doi.org/10.1007/s12274-011-0164-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0164-3

Keywords

Navigation