Skip to main content
Log in

Convective assembly of linear gold nanoparticle arrays at the micron scale for surface enhanced Raman scattering

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A convective assembly technique at the micron scale analogous to the writing action of a “pipette pen” has been developed for the linear assembly of gold nanoparticle strips with micron scale width and millimeter scale length for surface enhanced Raman scattering (SERS). The arrays with interparticle gaps smaller than 3 nm are hexagonally stacked in the vicinity of the pipette tip. Variable numbers of stacked layers and clean surfaces of the assembled nanoparticles are obtained by optimizing the velocity of the pipette tip. The SERS properties of the assembled nanoparticle arrays rely on their stacking number and surface cleanliness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. Banholzer, M. J.; Millstone, J. E.; Qin, L. D.; Mirkin, C. A. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2008, 37, 885–897.

    Article  CAS  Google Scholar 

  2. Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Nanostructured plasmonic sensors. Chem. Rev. 2008, 108, 494–521.

    Article  CAS  Google Scholar 

  3. Willets K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Ann. Rev. Phys. Chem. 2007, 58, 267–297.

    Article  CAS  Google Scholar 

  4. Qian, L. H.; Yan, X. Q.; Fujita, T.; Inoue A.; Chen, M. W. Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements. Appl. Phys. Lett. 2007, 90, 153120.

    Article  Google Scholar 

  5. Nie, S. M.; Emery, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106.

    Article  CAS  Google Scholar 

  6. Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R.; Feld, M. S. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667–1670.

    Article  CAS  Google Scholar 

  7. Xu, H. X.; Bjerneld, E. J.; Käll, M.; Borjesson, L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 1999, 83, 4357–4360.

    Article  CAS  Google Scholar 

  8. Chen, C.; Hutchison, J. A.; Clemente, F.; Kox, R.; Uji-I, H.; Hofkens, J.; Lagae, L.; Maes, G.; Borghs, G.; Van Dorpe, P. Direct evidence of high spatial localization of hot spots in surface-enhanced Raman scattering. Angew. Chem. Int. Ed. 2009, 48, 9932–9935.

    Article  CAS  Google Scholar 

  9. Fang, Y.; Seong, N. H.; Dlott, D. D. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 2008, 321, 388–392.

    Article  CAS  Google Scholar 

  10. Freeman, R. G.; Grabar, K. C.; Allison, K. J.; Bright, R. M.; Davis, J. A.; Guthrie, A. P.; Hommer, M. B.; Jackson, M. A.; Smith, P. C.; Walter, D. G.; Natan, M. J. Self-assembled metal colloid monolayers: An approach to SERS substrates. Science 1995, 267, 1629–1632.

    Article  CAS  Google Scholar 

  11. Tessier, P. M.; Velev, O. D.; Kalambur, A. T.; Rabolt, J. F.; Lenhoff, A. M.; Kaler, E. W. Assembly of gold nanostructured films templated by colloidal crystals and use in surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2000, 122, 9554–9555.

    Article  CAS  Google Scholar 

  12. Bigioni, T. P.; Lin, X. M.; Nguyen, T. T.; Corwin, E. I.; Witten, T. A.; Jaeger, H. M. Kinetically driven self-assembly of highly ordered nanoparticle monolayers. Nat. Mater. 2006, 5, 265–270.

    Article  CAS  Google Scholar 

  13. Wang, H. H.; Liu, C. Y.; Wu, S. B.; Liu, N. W.; Peng, C. Y.; Chan, T. H.; Hsu, C. F.; Wang, J. K.; Wang, Y. L. Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps. Adv. Mater. 2006, 18, 491–495.

    Article  CAS  Google Scholar 

  14. Denkov, N. D.; Velev, O. D.; Kralchevsky, P. A.; Ivanov, I. B.; Yoshimura, H.; Nagayama, K. Mechanism of formation of two-dimensional crystals from latex particles on substrates. Langmuir 1992, 8, 3183–3190.

    Article  CAS  Google Scholar 

  15. Dimitrov, A. S.; Nagayama, K. Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir 1996, 12, 1303–1311.

    Article  CAS  Google Scholar 

  16. Bishop, K. J. M.; Wilmer, C. E.; Soh, S.; Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 2009, 5, 1600–1630.

    Article  CAS  Google Scholar 

  17. Li, C.; Tang, Z. Y.; Jiang, L. Easy patterning of silver nanoparticle superstructures on silicon surfaces. J. Mater. Chem. 2010, 20, 9608–9612.

    Article  CAS  Google Scholar 

  18. Grzelczak, M.; Vermant, J.; Furst, E. M.; Liz-Marzan, L. M. Directed self-assembly of nanoparticles. ACS Nano 2010, 4, 3591–3605.

    Article  CAS  Google Scholar 

  19. Wang, H.; Levin, C. S.; Halas, N. J. Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates. J. Am. Chem. Soc. 2005, 127, 14992–14993.

    Article  CAS  Google Scholar 

  20. Jana, N. R.; Gearheart, L.; Murphy, C. J. Evidence for seedmediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem. Mater. 2001, 13, 2313–2322.

    Article  CAS  Google Scholar 

  21. Prevo, B. G.; Velev, O. D. Controlled, rapid deposition of structured coatings from micro- and nanoparticle suspensions. Langmuir 2004, 20, 2099–2107.

    Article  CAS  Google Scholar 

  22. Kim, M. H.; Im, S. H.; Park, O. O. Rapid fabrication of twoand three-dimensional colloidal crystal films via confined convective assembly. Adv. Funct. Mater. 2005, 15, 1329–1335.

    Article  CAS  Google Scholar 

  23. Farcau, C.; Moreira, H.; Viallet, B.; Grisolia, J.; Ressier, L. Tunable conductive nanoparticle wire arrays fabricated by convective self-assembly on nanopatterned substrates. ACS Nano 2010, 4, 7275–7282.

    Article  CAS  Google Scholar 

  24. Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827–829.

    Article  CAS  Google Scholar 

  25. Malaquin, L.; Kraus, T.; Schmid, H.; Delamarche, E.; Wolf, H. Controlled particle placement through convective and capillary assembly. Langmuir 2007, 23, 11513–11521.

    Article  CAS  Google Scholar 

  26. Huang, J. X.; Kim, F.; Tao, A. R.; Connor, S.; Yang, P. D. Spontaneous formation of nanoparticle stripe patterns through dewetting. Nat. Mater. 2005, 4, 896–900.

    Article  CAS  Google Scholar 

  27. Wang, Z. J.; Pan, S. L.; Krauss, T. D.; Du, H.; Rothberg, L. J. The structural basis for giant enhancement enabling singlemolecule Raman scattering. P. Natl. Acad. USA 2003, 100, 8638–8643.

    Article  CAS  Google Scholar 

  28. Krug, J. T.; Wang, G. D.; Emory, S. R.; Nie, S. M. Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals. J. Am. Chem. Soc. 1999, 121, 9208–9214.

    Article  CAS  Google Scholar 

  29. Qian, L. H.; Das, B.; Li, Y.; Yang, Z. L. Giant Raman enhancement on nanoporous gold film by conjugating with nanoparticles for single-molecule detection. J. Mater. Chem. 2010, 20, 6891–6895.

    Article  CAS  Google Scholar 

  30. Michaels, A. M.; Jiang, J.; Brus, L. Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. J. Phys. Chem. B 2000, 104, 11965–11971.

    Article  CAS  Google Scholar 

  31. Lu, Y.; Liu, G. L.; Lee, L. P. High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano Lett. 2005, 5, 5–9.

    Article  CAS  Google Scholar 

  32. Wei, H.; Hakanson, U.; Yang, Z. L.; Hook, F.; Xu, H. X. Individual nanometer hole-particle pairs for surface-enhanced Raman scattering. Small 2008, 4, 1296–1300.

    Article  CAS  Google Scholar 

  33. Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y.; Ren, B.; Wang, Z. L.; Tian, Z. Q. Shell-isolated nanoparticleenhanced Raman spectroscopy. Nature 2010, 464, 392–395.

    Article  CAS  Google Scholar 

  34. Li, S. Z.; Pedano, M. L.; Chang, S. H.; Mirkin, C. A.; Schatz, G. C. Gap structure effects on surface-enhanced Raman scattering intensities for gold Gapped Rods. Nano Lett. 2010, 10, 1722–1727.

    Article  CAS  Google Scholar 

  35. Im, H.; Bantz, K. C.; Lindquist, N. C.; Haynes, C. L.; Oh, S. H. Vertically oriented sub-10-nm plasmonic nanogap arrays. Nano Lett. 2010, 10, 2231–2236.

    Article  CAS  Google Scholar 

  36. Theiss, J.; Pavaskar, P.; Echternach, P. M.; Muller, R. E.; Cronin, S. B. Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates. Nano Lett. 2010, 10, 2749–2754.

    Article  CAS  Google Scholar 

  37. Graham, D.; Thompson, D. G.; Smith, W. E.; Faulds, K. Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. Nat. Nanotechnol. 2008, 3, 548–551.

    Article  CAS  Google Scholar 

  38. Deng, X. G.; Braun, G. B.; Liu, S.; Sciortino, P. F.; Koefer, B.; Tombler, T.; Moskovits, M. Single-order, subwavelength resonant nanograting as a uniformly hot substrate for surface-enhanced Raman spectroscopy. Nano Lett. 2010, 10, 1780–1786.

    Article  CAS  Google Scholar 

  39. Wustholz, K. L.; Henry, A. I.; McMahon, J. M.; Freeman, R. G.; Valley, N.; Piotti, M. E.; Natan, M. J.; Schatz, G. C.; Van Duyne, R. P. Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2010, 132, 10903–10910.

    Article  CAS  Google Scholar 

  40. Jin, R. Nanoparticle clusters light up in SERS. Angew. Chem. Int. Ed. 2010, 49, 2826–2829.

    CAS  Google Scholar 

  41. Huang, F.; Baumberg, J. J. Actively tuned plasmons on elastomerically driven Au nanoparticle dimers. Nano Lett. 2010, 10, 1787–1792.

    Article  CAS  Google Scholar 

  42. Shegai, T.; Li, Z. P.; Dadosh, T.; Zhang, Z. Y.; Xu, H. X.; Haran, G. Managing light polarization via plasmon-molecule interactions within an asymmetric metal nanoparticle trimer. P. Natl. Acad. USA 2008, 105, 16448–16453.

    Article  CAS  Google Scholar 

  43. Fang, P. P.; Li, J. F.; Yang, Z. L.; Li, L. M.; Ren, B.; Tian, Z. Q. Optimization of SERS activities of gold nanoparticles and gold-core-palladium-shell nanoparticles by controlling size and shell thickness. J. Raman Spectrosc. 2008, 39, 1679–1687.

    Article  CAS  Google Scholar 

  44. Chen, C. F.; Tzeng, S. D.; Chen, H. Y.; Lin, K. J.; Gwo, S. Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: Evidence of near-field coupling. J. Am. Chem. Soc. 2008, 130, 824–826.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Qian.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, L., Mookherjee, R. Convective assembly of linear gold nanoparticle arrays at the micron scale for surface enhanced Raman scattering. Nano Res. 4, 1117–1128 (2011). https://doi.org/10.1007/s12274-011-0159-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0159-0

Keywords

Navigation