Skip to main content
Log in

Highly sensitive protein sensor based on thermally-reduced graphene oxide field-effect transistor

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report the fabrication of a highly sensitive field-effect transistor (FET) biosensor using thermally-reduced graphene oxide (TRGO) sheets functionalized with gold nanoparticle (NP)-antibody conjugates. Probe antibody was labeled on the surface of TRGO sheets through Au NPs and electrical detection of protein binding (Immunoglobulin G/IgG and anti-Immunoglobulin G/anti-IgG) was accomplished by FET and direct current (dc) measurements. The protein binding events induced significant changes in the resistance of the TRGO sheet, which is referred to as the sensor response. The dependence of the sensor response on the TRGO base resistance in the sensor and the antibody areal density on the TRGO sheet was systematically studied, from which a correlation of the sensor response with sensor parameters was found: the sensor response was more significant with larger TRGO base resistance and higher antibody areal density. The detection limit of the novel biosensor was around the 0.2 ng/mL level, which is among the best of reported carbon nanomaterial-based protein sensors and can be further optimized by tuning the sensor structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giardi, M. T.; Scognamiglio, V.; Rea, G.; Rodio, G.; Antonacci, A.; Lambreva, M.; Pezzotti, G.; Johanningmeier, U. Optical biosensors for environmental monitoring based on computational and biotechnological tools for engineering the photosynthetic D1 protein of Chlamydomonas reinhardtii. Biosens. Bioelectron. 2009, 25, 294–300.

    Article  CAS  Google Scholar 

  2. Higgins, V. J.; Rogers, P. J.; Dawes, I. W. Application of genome-wide expression analysis to identify molecular markers useful in monitoring industrial fermentations. Appl. Environ. Microbiol. 2003, 69, 7535–7540.

    Article  CAS  Google Scholar 

  3. Jain, K. K. Applications of nanobiotechnology in clinical diagnostics. Clin. Chem. 2007, 53, 2002–2009.

    Article  CAS  Google Scholar 

  4. Lee, S. M.; Lee, S. B.; Park, C. H.; Choi, J. Expression of heat shock protein and hemoglobin genes in Chironomus tentans (Diptera, chironomidae) larvae exposed to various environmental pollutants: A potential biomarker of freshwater monitoring. Chemosphere. 2006, 65, 1074–1081.

    Article  CAS  Google Scholar 

  5. Chen, R. J.; Bangsaruntip, S.; Drouvalakis, K. A.; Kam, N. W. S.; Shim, M.; Li, Y. M.; Kim, W.; Utz, P. J.; Dai, H. J. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. USA 2003, 100, 4984–4989.

    Article  CAS  Google Scholar 

  6. Cui, Y.; Wei, Q. Q.; Park, H. K.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.

    Article  CAS  Google Scholar 

  7. Li, J.; Ng, H. T.; Cassell, A.; Fan, W.; Chen, H.; Ye, Q.; Koehne, J.; Han, J.; Meyyappan, M. Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett. 2003, 3, 597–602.

    Article  CAS  Google Scholar 

  8. Allen, B. L.; Kichambare, P. D.; Star, A. Carbon nanotube field-effect-transistor-based biosensors. Adv. Mater. 2007, 19, 1439–1451.

    Article  CAS  Google Scholar 

  9. Dong, X. C.; Lau, C. M.; Lohani, A.; Mhaisalkar, S. G.; Kasim, J.; Shen, Z. X.; Ho, X. N.; Rogers, J. A.; Li, L. J. Electrical detection of femtomolar DNA via gold-nanoparticle enhancement in carbon-nanotube-network field-effect transistors. Adv. Mater. 2008, 20, 2389–2393.

    Article  CAS  Google Scholar 

  10. Kim, J. P.; Lee, B. Y.; Lee, J.; Hong, S.; Sim, S. J. Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors. Biosens. Bioelectron. 2009, 24, 3372–3378.

    Article  CAS  Google Scholar 

  11. Martinez, M. T.; Tseng, Y. C.; Ormategui, N.; Loinaz, I.; Eritja, R.; Bokor, J. Label-free DNA biosensors based on functionalized carbon nanotube field effect transistors. Nano Lett. 2009, 9, 530–536.

    Article  CAS  Google Scholar 

  12. Geim, A. K. Graphene: Status and prospects. Science. 2009, 324, 1530–1534.

    Article  CAS  Google Scholar 

  13. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  CAS  Google Scholar 

  14. Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60–63.

    Article  CAS  Google Scholar 

  15. Campos-Delgado, J.; Romo-Herrera, J. M.; Jia, X. T.; Cullen, D. A.; Muramatsu, H.; Kim, Y. A.; Hayashi, T.; Ren, Z. F.; Smith, D. J.; Okuno, Y., et al. Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons. Nano Lett. 2008, 8, 2773–2778.

    Article  CAS  Google Scholar 

  16. Choucair, M.; Thordarson, P.; Stride, J. A. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 2009, 4, 30–33.

    Article  CAS  Google Scholar 

  17. Ci, L.; Xu, Z. P.; Wang, L. L.; Gao, W.; Ding, F.; Kelly, K. F.; Yakobson, B. I.; Ajayan, P. M. Controlled nanocutting of graphene. Nano Res. 2008, 1, 116–122.

    Article  CAS  Google Scholar 

  18. Park, S.; Ruoff, R. S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 4, 217–224.

    Article  CAS  Google Scholar 

  19. Reina, A.; Thiele, S.; Jia, X. T.; Bhaviripudi, S.; Dresselhaus, M. S.; Schaefer, J. A.; Kong, J. Growth of large-area single- and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2009, 2, 509–516.

    Article  CAS  Google Scholar 

  20. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  21. Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semi-conductors. Science 2008, 319, 1229–1232.

    Article  CAS  Google Scholar 

  22. Ouyang, Y. J.; Dai, H. J.; Guo, J. Projected performance advantage of multilayer graphene nanoribbons as a transistor channel material. Nano Res. 2010, 3, 8–15.

    Article  CAS  Google Scholar 

  23. Russell, J.; Kral, P. Configuration-sensitive molecular sensing on doped graphene sheets. Nano Res. 2010, 3, 472–480.

    Article  CAS  Google Scholar 

  24. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.

    Article  CAS  Google Scholar 

  25. Watcharotone, S.; Dikin, D. A.; Stankovich, S.; Piner, R.; Jung, I.; Dommett, G. H. B.; Evmenenko, G.; Wu, S. E.; Chen, S. F.; Liu, C. P., et al. Graphene-silica composite thin films as transparent conductors. Nano Lett. 2007, 7, 1888–1892.

    Article  CAS  Google Scholar 

  26. Wang, D. H.; Choi, D. W.; Li, J.; Yang, Z. G.; Nie, Z. M.; Kou, R.; Hu, D. H.; Wang, C. M.; Saraf, L. V.; Zhang, J. G., et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 2009, 3, 907–914.

    Article  CAS  Google Scholar 

  27. Wang, Z. Y.; Zhang, H.; Li, N.; Shi, Z. J.; Gu, Z. N.; Cao, G. P. Laterally confined graphene nanosheets and graphene/SnO2 composites as high-rate anode materials for lithium-ion batteries. Nano Res. 2010, 3, 748–756.

    Article  CAS  Google Scholar 

  28. Patchkovskii, S.; Tse, J. S.; Yurchenko, S. N.; Zhechkov, L.; Heine, T.; Seifert, G. Graphene nanostructures as tunable storage media for molecular hydrogen. Proc. Natl. Acad. Sci. USA 2005, 102, 10439–10444.

    Article  CAS  Google Scholar 

  29. Dong, X. C.; Shi, Y. M.; Huang, W.; Chen, P.; Li, L. J. Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv. Mater. 2010, 22, 1649–1653.

    Article  CAS  Google Scholar 

  30. Lu, J.; Do, I.; Drzal, L. T.; Worden, R. M.; Lee, I. Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response. ACS Nano. 2008, 2, 1825–1832.

    Article  CAS  Google Scholar 

  31. Mohanty, N.; Berry, V. Graphene-based single-bacterium resolution biodevice and DNA transistor: Interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 2008, 8, 4469–4476.

    Article  CAS  Google Scholar 

  32. Ohno, Y.; Maehashi, K.; Yamashiro, Y.; Matsumoto, K. Electrolyte-gated graphene field-effect transistors for detecting pH protein adsorption. Nano Lett. 2009, 9, 3318–3322.

    Article  CAS  Google Scholar 

  33. Shan, C. S.; Yang, H. F.; Han, D. X.; Zhang, Q. X.; Ivaska, A.; Niu, L. Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens. Bioelectron. 2010, 25, 1070–1074.

    Article  CAS  Google Scholar 

  34. Shan, C. S.; Yang, H. F.; Song, J. F.; Han, D. X.; Ivaska, A.; Niu, L. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal. Chem. 2009, 81, 2378–2382.

    Article  CAS  Google Scholar 

  35. Wu, H.; Wang, J.; Kang, X. H.; Wang, C. M.; Wang, D. H.; Liu, J.; Aksay, I. A.; Lin, Y. H. Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. Talanta 2009, 80, 403–406.

    Article  CAS  Google Scholar 

  36. Zhong, Z. Y.; Wu, W.; Wang, D.; Shan, J. L.; Qing, Y.; Zhang, Z. M. Nanogold-enwrapped graphene nanocomposites as trace labels for sensitivity enhancement of electrochemical immunosensors in clinical immunoassays: Carcinoembryonic antigen as a model. Biosens. Bioelectron. 2010, 25, 2379–2383.

    Article  CAS  Google Scholar 

  37. Zhou, M.; Zhai, Y. M.; Dong, S. J. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 2009, 81, 5603–5613.

    Article  CAS  Google Scholar 

  38. Wang, H. L.; Robinson, J. T.; Li, X. L.; Dai, H. J. Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc. 2009, 131, 9910–9911.

    Article  CAS  Google Scholar 

  39. Mao, S.; Lu, G. H.; Yu, K. H.; Bo, Z.; Chen, J. H. Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv. Mater. 2010, 22, 3521–3526.

    Article  CAS  Google Scholar 

  40. Wei, Q.; Mao, K. X.; Wu, D.; Dai, Y. X.; Yang, J. A.; Du, B.; Yang, M. H.; Li, H. A novel label-free electrochemical immunosensor based on graphene and thionine nanocomposite. Sens. Actuat. B-Chem. 2010, 149, 314–318.

    Article  Google Scholar 

  41. Park, S.; An, J. H.; Piner, R. D.; Jung, I.; Yang, D. X.; Velamakanni, A.; Nguyen, S. T.; Ruoff, R. S. Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 2008, 20, 6592–6594.

    Article  CAS  Google Scholar 

  42. Park, S.; An, J. H.; Jung, I. W.; Piner, R. D.; An, S. J.; Li, X. S.; Velamakanni, A.; Ruoff, R. S. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 2009, 9, 1593–1597.

    Article  CAS  Google Scholar 

  43. Jung, I.; Dikin, D. A.; Piner, R. D.; Ruoff, R. S. Tunable electrical conductivity of individual graphene oxide sheets reduced at “low” temperatures. Nano Lett. 2008, 8, 4283–4287.

    Article  CAS  Google Scholar 

  44. Li, X. L.; Wang, H. L.; Robinson, J. T.; Sanchez, H.; Diankov, G.; Dai, H. J. Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 2009, 131, 15939–15944.

    Article  CAS  Google Scholar 

  45. Star, A.; Gabriel, J. C. P.; Bradley, K.; Gruner, G. Electronic detection of specific protein binding using nanotube FET devices. Nano Lett. 2003, 3, 459–463.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhong Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, S., Yu, K., Lu, G. et al. Highly sensitive protein sensor based on thermally-reduced graphene oxide field-effect transistor. Nano Res. 4, 921–930 (2011). https://doi.org/10.1007/s12274-011-0148-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0148-3

Keywords

Navigation