Skip to main content
Log in

In Situ TEM observation of the gasification and growth of carbon nanotubes using iron catalysts

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report the in situ transmission electron microscope (TEM) observation of the catalytic gasification and growth of carbon nanotubes (CNTs). It was found that iron catalysts can consume the CNTs when pumping out the precursor gas, acetylene, at the growth temperature, and reinitiate the growth when acetylene is re-introduced. The switching between gasification and growth of CNTs can be repeated many times with the same catalyst. To understand the phenomenon, thermogravimetric analysis (TGA) coupled with mass spectroscopy was used to study the mechanism involved. It was shown that the residual water molecules in the growth chamber of the TEM react with and remove carbon atoms of CNTs as carbon monoxide vapor under the action of the catalyst, when the precursor gas is pumped out. This result contributes to a better understanding of the water-assisted and oxygen-assisted synthesis of CNT arrays, and provides useful clues on how to extend the lifetime and improve the activity of the catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dresselhaus, M. S.; Dresselhaus, G.; Avouris, Ph. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications; Springer: Heidelberg, 2001.

    Book  Google Scholar 

  2. Dai, H. J.; Rinzler, A. G.; Nikolaev, P.; Thess, A.; Colbert, D. T.; Smalley, R. E. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett. 1996, 260, 471–475.

    Article  CAS  Google Scholar 

  3. Fan, S. S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. J. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 1999, 283, 512–514.

    Article  CAS  Google Scholar 

  4. Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 2004, 306, 1362–1364.

    Article  CAS  Google Scholar 

  5. Bower, C.; Zhou, O.; Zhu, W.; Werder, D. J.; Jin, S. H. Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl. Phys. Lett. 2000, 77, 2767–2769.

    Article  CAS  Google Scholar 

  6. Homma, Y.; Kobayashi, Y.; Ogino, T.; Takagi, D.; Ito, R.; Jung, Y. J.; Ajayan, P. M. Role of transition metal catalysts in single-walled carbon nanotube growth in chemical vapor deposition. J. Phys. Chem. B 2003, 107, 12161–12164.

    Article  CAS  Google Scholar 

  7. Schaper, A. K.; Hou, H. Q.; Greiner, A.; Phillipp, F. The role of iron carbide in multiwalled carbon nanotube growth. J. Catal. 2004, 222, 250–254.

    Article  CAS  Google Scholar 

  8. Esconjauregui, S.; Whelan, C. M.; Maex, K. The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies. Carbon 2009, 47, 659–669.

    Article  CAS  Google Scholar 

  9. Yasuda, A.; Kawase, N.; Mizutani, W. Carbon-nanotube formation mechanism based on in situ TEM observations. J. Phys. Chem. B 2002, 106, 13294–13298.

    Article  CAS  Google Scholar 

  10. Helveg, S.; López-Cartes, C.; Sehested, J.; Hansen, P. L.; Clausen, B. S.; Rostrup-Nielsen, J. R.; Abild-Pedersen, F.; Norskov, J. K. Atomic-scale imaging of carbon nanofibre growth. Nature 2004, 427, 426–429.

    Article  CAS  Google Scholar 

  11. Sharma, R.; Iqbal, Z. In situ observations of carbon nanotube formation using environmental transmission electron microscopy. Appl. Phys. Lett. 2004, 84, 990–992.

    Article  CAS  Google Scholar 

  12. Sharma, R. An environmental transmission electron microscope for in situ synthesis and characterization of nanomaterials. J. Mater. Res. 2005, 20, 1695–1707.

    Article  CAS  Google Scholar 

  13. Sharma, R.; Rez, P.; Treacy, M. M. J.; Stuart, S. J. In situ observation of the growth mechanisms of carbon nanotubes under diverse reaction conditions. J. Electron. Microsc. 2005, 54, 231–237.

    Article  CAS  Google Scholar 

  14. Lin, M.; Tan, J. P. Y.; Boothroyd, C.; Loh, K. P.; Tok, E. S.; Foo, Y. L. Direct observation of single-walled carbon nanotube growth at the atomistic scale. Nano Lett. 2006, 6, 449–452.

    Article  CAS  Google Scholar 

  15. Hofmann, S.; Sharma, R.; Ducati, C.; Du, G.; Mattevi, C.; Cepek, C.; Cantoro, M.; Pisana, S.; Parvez, A.; Cervantes-Sodi, F.; Ferrari, A. C.; Dunin-Borkowski, R.; Lizzit, S.; Petaccia, L.; Goldoni, A.; Robertson, J. In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett. 2007, 7, 602–608.

    Article  CAS  Google Scholar 

  16. Lin, M.; Tan, J. P. Y.; Boothroyd, C.; Loh, K. P.; Tok, E. S.; Foo, Y. L. Dynamical observation of bamboo-like carbon nanotube growth. Nano Lett. 2007, 7, 2234–2238.

    Article  CAS  Google Scholar 

  17. Yoshida, H.; Takeda, S.; Uchiyama, T.; Knhno, H.; Homma, Y. Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett. 2008, 8, 2082–2086.

    Article  CAS  Google Scholar 

  18. Sharma, R.; Moore, E.; Rez, P.; Treacy, M. M. J. Site-specific fabrication of Fe particles for carbon nanotube growth. Nano Lett. 2009, 9, 689–694.

    Article  CAS  Google Scholar 

  19. Yoshida, H.; Shimizu, T.; Uchiyama, T.; Kohno, H.; Homma, Y.; Takeda, S. Atomic-scale analysis on the role of molybdenum in iron-catalyzed carbon nanotube growth. Nano Lett. 2009, 9, 3810–3815.

    Article  CAS  Google Scholar 

  20. Zhang, L. N.; Feng C.; Chen Z.; Liu L.; Jiang K. L.; Li, Q. Q.; Fan, S. S. Superaligned carbon nanotube grid for high resolution transmission electron microscopy of nanomaterials. Nano Lett. 2008, 8, 2564–2569.

    Article  CAS  Google Scholar 

  21. Feng, X. F.; Liu, K.; Xie, X.; Zhou, R. F.; Zhang, L. N.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Thermal analysis study of the growth kinetics of carbon nanotubes and epitaxial graphene layers on them. J. Phys. Chem. C 2009, 113, 9623–9631.

    Article  CAS  Google Scholar 

  22. Zhang, X. B.; Jiang, K. L.; Feng, C.; Liu, P.; Zhang, L. N.; Kong, J.; Zhang, T. H.; Li, Q. Q.; Fan, S. S. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv. Mater. 2006, 18, 1505–1510.

    Article  CAS  Google Scholar 

  23. Jiang, K. L.; Li, Q. Q.; Fan, S. S. Spinning continuous carbon nanotube yarns. Nature 2002, 419, 801.

    Article  CAS  Google Scholar 

  24. Liu, K.; Sun, Y. H.; Chen, L.; Feng, C.; Feng, X. F.; Jiang, K. L.; Zhao, Y. G.; Fan, S. S. Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett. 2008, 8, 700–705.

    Article  CAS  Google Scholar 

  25. McKee, D. W. Mechanisms of the alkali metal catalysed gasification of carbon. Fuel 1983, 62, 170–175.

    Article  CAS  Google Scholar 

  26. Tamai, Y.; Watanabe, H., Tomita, A. Catalytic gasification of carbon with steam, carbon dioxide and hydrogen. Carbon 1977, 15, 103–106.

    Article  CAS  Google Scholar 

  27. Tomita, A.; Tamai, Y. Optical microscopic study on catalytic hyrogenation of graphite. J. Phys. Chem. 1974, 78, 2254–2258.

    Article  CAS  Google Scholar 

  28. McKee, D. W. Effect of metallic impurities on the gasification of graphite in water vapor and hydrogen. Carbon 1974, 12, 453–464.

    Article  CAS  Google Scholar 

  29. Baker, R. T. K.; Sherwood, R. D. Catalytic gasification of graphite by nickel in various gaseous environments. J. Catal. 1981, 70, 198–214.

    Article  CAS  Google Scholar 

  30. Figueiredo, J. L.; Bernardo, C. A.; Chludzinski, J. J. Jr.; Baker, R. T. K. The reversibility of filamentous carbon growth and gasification. J. Catal. 1988, 110, 127–138.

    Article  CAS  Google Scholar 

  31. Snoeck, J. -W.; Froment, G. F.; Fowles, M. Filamentous carbon formation and gasification: Thermodynamics, driving force, nucleation, and steady-state growth. J. Catal. 1997, 169, 240–249.

    Article  CAS  Google Scholar 

  32. Datta, S. S.; Strachan, D. R.; Khamis, S. M.; Johnson, A. T. C. Crystallographic etching of few-layer graphene. Nano Lett. 2008, 8, 1912–1915.

    Article  CAS  Google Scholar 

  33. Ci, L. J.; Xu, Z. P.; Wang, L. L.; Gao, W.; Ding, F.; Kelly, K. F.; Yakobson, B. I.; Ajayan, P. M. Controlled nanocutting of Graphene. Nano Res. 2008, 1, 116–122.

    Article  CAS  Google Scholar 

  34. Shimada, T.; Yanase, H.; Morishita, K.; Hayashi, J.; Chiba, T. Points of onset of gasification in a multi-walled carbon nanotube having an imperfect structure. Carbon 2004, 42, 1635–1639.

    Article  CAS  Google Scholar 

  35. Stolojan, V.; Tison, Y.; Chen, G. Y.; Silva, R. Controlled growth-reversal of catalytic carbon nanotubes under electron-beam irradiation. Nano Lett. 2006, 6, 1837–1841.

    Article  CAS  Google Scholar 

  36. Baker, R. T. K.; Barber, M. A.; Harris, P. S.; Feates, F. S.; Waite, R. J. Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catal. 1972, 26, 51–62.

    Article  CAS  Google Scholar 

  37. Jiang, K. L.; Feng, C.; Liu, K.; Fan, S. S. A vapor-liquid-solid model for chemical vapor deposition growth of carbon nanotubes. J. Nanosci. Nanotechnol. 2007, 7, 1494–1504.

    Article  CAS  Google Scholar 

  38. Takagi, D.; Hibino, H.; Suzuki, S.; Kobayashi, Y.; Homma, Y. Carbon nanotube growth from semiconductor nanoparticles. Nano Lett. 2007, 7, 2272–2275.

    Article  CAS  Google Scholar 

  39. Huang, S. M.; Cai, Q. R.; Chen, J. Y.; Qian, Y.; Zhang, L. J. Metal-catalyst-free growth of single-walled carbon nanotubes on substrates. J. Am. Chem. Soc. 2009, 131, 2094–2095.

    Article  CAS  Google Scholar 

  40. Liu, B.; Ren, W. C.; Gao, L. B.; Li, S. S.; Pei, S. F.; Liu, C.; Jiang, C. B.; Cheng, H. M. Metal-catalyst-free growth of single-walled carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 2082–2083.

    Article  CAS  Google Scholar 

  41. Krivoruchko, O. P.; Zaikovskii, V. I. Formation of liquid phase in the carbon-metal system at unusually low temperature. Kinet. Catal. 1998, 39, 561–570.

    CAS  Google Scholar 

  42. Liu, K.; Jiang, K. L.; Feng, C.; Chen, Z.; Fan, S. S. A growth mark method for studying growth mechanism of carbon nanotube arrays. Carbon 2005, 43, 2850–2856.

    Article  CAS  Google Scholar 

  43. Yamada, T.; Maigne, A.; Yudasaka, M.; Mizuno, K.; Futaba, D. N.; Yumura, M.; Iijima, S.; Hata, K. Revealing the secret of water-assisted carbon nanotube synthesis by microscopic observation of the interaction of water on the catalysts. Nano Lett. 2008, 8, 4288–4292.

    Article  CAS  Google Scholar 

  44. Futaba, D. N.; Hata, K.; Yamada, T.; Mizuno, K.; Yumura, M.; Iijima, S. Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Phys. Rev. Lett. 2005, 95, 056104.

    Article  Google Scholar 

  45. Bystrzejewski, M.; Schonfelder, R.; Cuniberti, G.; Lange, H.; Huczko, A.; Gemming, T.; Pichler, T.; Buchner, B.; Rummeli, M. Exposing multiple roles of H2O in high-temperature enhanced carbon nanotube synthesis. Chem. Mater. 2008, 20, 6586–6588.

    Article  CAS  Google Scholar 

  46. Zhang, G. Y.; Mann, D.; Zhang, L.; Javey, A.; Li, Y. M.; Yenilmez, E.; Wang, Q.; McVittie, J. P.; Nishi, Y.; Gibbons, J.; Dai, H. J. Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. Proc. Natl. Acad. Sci. USA 2005, 102, 16141–16145.

    Article  CAS  Google Scholar 

  47. Wen, Q.; Qian, W. Z.; Wei, F.; Ning, G. Q. Oxygen-assisted synthesis of SWNTs from methane decomposition. Nanotechnology 2007, 18, 215610.

    Article  Google Scholar 

  48. Li, X. S.; Zhang, X. F.; Ci, L. J.; Shah, R.; Wolfe, C.; Kar, S.; Talapatra, S.; Ajayan, P. M. Air-assisted growth of ultra-long carbon nanotube bundles. Nanotechnology 2008, 19, 455609.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaili Jiang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, X., Chee, S.W., Sharma, R. et al. In Situ TEM observation of the gasification and growth of carbon nanotubes using iron catalysts. Nano Res. 4, 767–779 (2011). https://doi.org/10.1007/s12274-011-0133-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0133-x

Keywords

Navigation