Skip to main content
Log in

Ultra-thin double-walled carbon nanotubes: A novel nanocontainer for preparing atomic wires

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Double-walled carbon nanotubes (DWCNTs) with high graphitization have been synthesized by hydrogen arc discharge. The obtained DWCNTs have a narrow distribution of diameters of both the inner and outer tubes, and more than half of the DWCNTs have inner diameters in the range 0.6–1.0 nm. Field electron emission from a DWCNT cathode to an anode has been measured, and the emission current density of DWCNTs reached 1 A/cm2 at an applied field of about 4.3 V/μm. After high-temperature treatment of DWCNTs, long linear carbon chains (C-chains) can be grown inside the ultra-thin DWCNTs to form a novel C-chain@DWCNT nanostructure, showing that these ultra-thin DWCNTs are an appropriate nanocontainer for preparing truly one-dimensional nanostructures with one-atom-diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

    Article  CAS  Google Scholar 

  2. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  3. Zhao, X.; Ando, Y.; Liu, Y.; Jinno, M.; Suzuki, T. Carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube. Phys. Rev. Lett. 2003, 90, 187401.

    Article  Google Scholar 

  4. Muramatsu, H.; Hayashi, T.; Kim, Y. A.; Shimamoto, D.; Endo, M.; Terrones, M.; Dresselhaus, M. S. Synthesis and isolation of molybdenum atomic wires. Nano Lett. 2008, 8, 237–240.

    Article  CAS  Google Scholar 

  5. Kitaura, R.; Nakanishi, R.; Saito, T.; Yoshikawa, H.; Awaga, K.; Shinohara, H. High-yield synthesis of ultrathin metal nanowires in carbon nanotubes. Angew. Chem. Int. Ed. 2009, 48, 8298–8302.

    Article  CAS  Google Scholar 

  6. Kitaura, R.; Imazu, N.; Kobayashi, K.; Shinohara, H. Fabrication of metal nanowires in carbon nanotubes via versatile nano-template reaction. Nano Lett. 2008, 8, 693–699.

    Article  CAS  Google Scholar 

  7. Kobayashi, K.; Suenaga, K.; Saito, T.; Shinohara, H.; Iijima, S. Photoreactivity preservation of AgBr nanowires in confined nanospaces. Adv. Mater. 2010, 22, 3156–3160.

    Article  CAS  Google Scholar 

  8. Shimada, T.; Sugai, T.; Ohno, Y.; Kishimoto, S.; Mizutani, T.; Yoshida, H.; Okazaki, T.; Shinohara, H. Double-wall carbon nanotube field-effect transistors: Ambipolar transport characteristics. Appl. Phys. Lett. 2004, 84, 2412–2414.

    Article  CAS  Google Scholar 

  9. Wei, J. Q.; Jia, Y.; Shu, Q. K.; Gu, Z. Y.; Wang, K. L.; Zhuang, D. M.; Zhang, G.; Wang, Z. C.; Luo, J. B.; Cao, A. Y.; Wu, D. H. Double-walled carbon nanotube solar cells. Nano Lett. 2007, 7, 2317–2321.

    Article  CAS  Google Scholar 

  10. Kuwahara, S.; Akita, S.; Shirakihara, M.; Sugai, T.; Nakayama, Y.; Shinohara, H. Fabrication and characterization of high-resolution AFM tips with high-quality double-wall carbon nanotubes. Chem. Phys. Lett. 2006, 429, 581–585.

    Article  CAS  Google Scholar 

  11. Hutchison, J. L.; Kiselev, N. A.; Krinichnaya, E. P.; Krestinin, A. V.; Loutfy, R. O.; Morawsky, A. P.; Muradyan, V. E.; Obraztsova, E. D.; Sloan, J.; Terekhov, S. V.; Zakharov, D. N. Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 2001, 39, 761–770.

    Article  CAS  Google Scholar 

  12. Saito, Y.; Nakahira, T.; Uemura, S. Growth conditions of double-walled carbon nanotubes in arc discharge. J. Phys. Chem. B 2003, 107, 931–934.

    Article  CAS  Google Scholar 

  13. Chen, Z. G.; Li, F.; Ren, W. C.; Cong, H. T.; Liu, C.; Lu, G. Q.; Cheng, H. M. Double-walled carbon nanotubes synthesized using carbon black as the dot carbon source. Nanotechnology 2006, 17, 3100–3104.

    Article  CAS  Google Scholar 

  14. Sugai, T.; Yoshida, H.; Shimada, T.; Okazaki, T.; Shinohara, H.; Bandow, S. New synthesis of high-quality double-walled carbon nanotubes by high-temperature pulsed arc discharge. Nano Lett. 2003, 3, 769–773.

    Article  CAS  Google Scholar 

  15. Bandow, S.; Takizawa, M.; Hirahara, K.; Yudasaka, M.; Iijima, S. Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in singlewall carbon nanotubes. Chem. Phys. Lett. 2001, 337, 48–54.

    Article  CAS  Google Scholar 

  16. Endo, M.; Muramatsu, H.; Hayashi, T.; Kim, Y. A.; Terrones, M.; Dresselhaus, M. S. “Buckypaper” from coaxial nanotubes. Nature 2005, 433, 476.

    Article  CAS  Google Scholar 

  17. Ci, L.; Rao, Z.; Zhou, Z.; Tang, D.; Yan, X.; Liang, Y.; Liu, D.; Yuan, H.; Zhou, W.; Wang, G.; Liu, W.; Xie, S. Double wall carbon nanotubes promoted by sulfur in a floating iron catalyst CVD system. Chem. Phys. Lett. 2002, 359, 63–67.

    Article  CAS  Google Scholar 

  18. Yamada, T.; Namai, T.; Hata, K.; Futaba, D. N.; Mizuno, K.; Fan, J.; Yudasaka, M.; Yumura, M.; Iijima, S. Sizeselective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nat. Nanotechnol. 2006, 1, 131–136.

    Article  CAS  Google Scholar 

  19. Qi, H.; Qian, C.; Liu, J. Synthesis of uniform double-walled carbon nanotubes using iron disilicide as catalyst. Nano Lett. 2007, 7, 2417–2421.

    Article  CAS  Google Scholar 

  20. Green, A. A.; Hersam, M. C. Processing and properties of highly enriched double-wall carbon nanotubes. Nat. Nanotechnol. 2009, 4, 64–70.

    Article  CAS  Google Scholar 

  21. Kratschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Solid C60: A new form of carbon. Nature 1990, 347, 354–358.

    Article  Google Scholar 

  22. Journet, C.; Maser, W. K.; Bernier, P.; Loiseau, A.; de la Chapelle, M. L.; Lefrant, S.; Deniard, P.; Lee, R.; Fischer, J. E. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 1997, 388, 756–758.

    Article  CAS  Google Scholar 

  23. Panchakarla, L. S.; Subrahmanyam, K. S.; Saha, S. K.; Govindaraj, A.; Krishnamurthy, H. R.; Waghmare, U. V.; Rao, C. N. R. Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 2009, 21, 4726–4730.

    CAS  Google Scholar 

  24. Kim, M. S.; Rodriguez, N. M.; Baker, R. T. K. The interplay between sulfur adsorption and carbon deposition on cobalt catalysts. J. Catal. 1993, 143, 449–463.

    Article  CAS  Google Scholar 

  25. Tibbetts, G. G.; Bernardo, C. A.; Gorkiewicz, D. W.; Alig, R. L. Role of sulfur in the production of carbon fibers in the vapor phase. Carbon 1994, 32, 569–576.

    Article  CAS  Google Scholar 

  26. Kuzmany, H.; Plank, W.; Hulman, M.; Kramberger, C.; Grüneis, A.; Pichler, T.; Peterlik, H.; Kataura, H.; Achiba, Y. Determination of SWCNT diameters from the Raman response of the radial breathing mode. Eur. Phys. J. B 2001, 22, 307–320.

    Article  Google Scholar 

  27. Souza Filho, A. G.; Endo, M.; Muramatsu, H.; Hayashi, T.; Kim, Y. A.; Barros, E. B.; Akuzawa, N.; Samsonidze, Ge. G.; Saito, R.; Dresselhaus, M. S. Resonance Raman scattering studies in Br2-adsorbed double-wall carbon nanotubes. Phys. Rev. B 2006, 73, 235413.

    Article  Google Scholar 

  28. Fowler, R. H.; Nordheim, L. W. Electron emission in intense electric fields. Proc. R. Soc. A 1928, 119, 173–181.

    Article  CAS  Google Scholar 

  29. Ha, B.; Shin, D. H.; Park, J.; Lee, C. J. Electronic structure and field emission properties of double-walled carbon nanotubes synthesized by hydrogen arc discharge. J. Phys. Chem. C 2008, 112, 430–435.

    Article  CAS  Google Scholar 

  30. Endo, M.; Kim, Y. A.; Hayashi, T.; Muramatsu, H.; Terrones, M.; Saito, R.; Villalpando-Paez, F.; Chou, S. G.; Dresselhaus, M. S. Nanotube coalescence-inducing mode: A novel vibrational mode in carbon systems. Small 2006, 2, 1031–1036.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leimei Sheng or Xinluo Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, L., Sheng, L., Yu, L. et al. Ultra-thin double-walled carbon nanotubes: A novel nanocontainer for preparing atomic wires. Nano Res. 4, 759–766 (2011). https://doi.org/10.1007/s12274-011-0132-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0132-y

Keywords

Navigation