Skip to main content
Log in

Production of graphene nanospheres by annealing of graphene oxide in solution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report a simple method to produce graphene nanospheres (GNSs) by annealing graphene oxide (GO) solution at high-temperature with the assistance of sparks induced by the microwave absorption of graphite flakes dispersed in the solution. The GNSs were formed by rolling up of the annealed GO, and the diameters were mostly in the range 300–700 nm. The GNS exhibited a hollow sphere structure surrounded by graphene walls with a basal spacing of 0.34 nm. Raman spectroscopy and X-ray photoelectron spectroscopy of the GNSs confirmed that the GO was efficiently reduced during the fabrication process. The resulting GNSs may open up new opportunities both for fundamental research and applications, and this method may be extended to the synthesis of other nanomaterials and the fabrication of related nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  2. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

    Article  CAS  Google Scholar 

  3. Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.

    Article  CAS  Google Scholar 

  4. Di, C.; Wei, D.; Yu, G.; Liu, Y.; Guo, Y.; Zhu, D. Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv. Mater. 2008, 20, 3289–3293.

    Article  CAS  Google Scholar 

  5. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhass, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.

    Article  CAS  Google Scholar 

  6. Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

    Article  CAS  Google Scholar 

  7. Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmeneko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457–460.

    Article  CAS  Google Scholar 

  8. Zhu, Z.; Su, D.; Weinberg, G.; Schlögl, Robert. Supermolecular self-assembly of graphene sheets: Formation of tube-in-tube nanostructures. Nano Lett. 2004, 4, 2255–2259.

    Article  CAS  Google Scholar 

  9. Chen, H.; Müller, M. B.; Gilmore, K. J.; Wallace, G. G.; Li, D. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 2008, 20, 3557–3561.

    Article  CAS  Google Scholar 

  10. Chen, C.; Yang, Q.; Yang, Y.; Lv, W.; Wen, Y.; Hou, P.; Wang, M.; Cheng, H. Self-assembled free-standing graphite oxide membrane. Adv. Mater. 2009, 21, 3007–3011.

    Article  CAS  Google Scholar 

  11. Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E.; Dai, H. J. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 2008, 3, 538–542.

    Article  CAS  Google Scholar 

  12. Xia, Y.; Mokaya, R. Ordered mesoporous carbon hollow spheres nanocast using mesoporous silica via chemical vapor deposition. Adv. Mater. 2004, 16, 886–891.

    Article  CAS  Google Scholar 

  13. Yu, J. C.; Hu, X.; Li, Q.; Zheng, Z.; Xu, Y. Synthesis and characterization of core-shell selenium/carbon colloids and hollow carbon capsules. Chem. Eur. J. 2006, 12, 548–552.

    Article  Google Scholar 

  14. Guo, P.; Song, H.; Chen, X. Hollow graphene oxide sphere self-assembled by W/O emulsion. J. Mater. Chem. 2010, 20, 4867–4874.

    Article  CAS  Google Scholar 

  15. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Rouff, R. S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  CAS  Google Scholar 

  16. Tang, Z.; Claveau, D.; Corcuff, R.; Belkacemi, K.; Arul, J. Preparation of nano-CaO using thermal-deposition method. Mater. Lett. 2008, 62. 2096–2098.

    Article  Google Scholar 

  17. Bigdeli, F.; Morsali, A.; Retaileau, P. Syntheses and characterization of different zinc oxide nano-structures. Polyhedron 2010, 29, 801–805.

    Article  CAS  Google Scholar 

  18. Choi, Y. C.; Kim, W. S.; Park, Y. S.; Lee, S. M.; Bae, D. J.; Lee, Y. H.; Pak, G.; Choi, W. B.; Lee, N. S.; Kim, J. M. Catalytic growth of β-Ga2O3 nanowires by arc discharge. Adv. Mater. 2000, 12, 746–750.

    Article  CAS  Google Scholar 

  19. Hutchison, J. L.; Kiselev, N. A.; Krinichnaya, E. P.; Krestinin, A. V.; Loutfy, R. O.; Morawsky, A. P.; Muradyan, V. E.; Obraztsova, E. D.; Solan, J.; Terekhov, S. V.; Zakharov, D. N. Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 2001, 39, 761–770.

    Article  CAS  Google Scholar 

  20. Loiseau, A.; Willaime, F.; Demoncy, N.; Hug, G.; Pascard, H. Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge. Phys. Rev. Lett. 1996, 76, 4737–4740.

    Article  CAS  Google Scholar 

  21. Pan, Y.; Zhang, H.; Shi, D.; Sun, J.; Du, S.; Liu, F.; Gao, H. Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001). Adv. Mater. 2009, 21, 2777–2780.

    Article  CAS  Google Scholar 

  22. Calderon-Moreno, J. M.; Yoshimura, M. Hydrothermal processing of high-quality multiwall nanotubes from amorphous carbon. J. Am. Chem. Soc. 2001, 123, 741–742.

    Article  CAS  Google Scholar 

  23. Poncharal, P.; Ayari, A.; Michel, T.; Sauvajol, J. L. Raman spectra of misoriented bilayer graphene. Phys. Rev. B 2008, 78, 113407.

    Article  Google Scholar 

  24. Ni, Z. H.; Wang, Y. Y.; Yu, T.; You, Y. M.; Shen, Z. X. Reduction of Fermi velocity in folded graphene observed by resonance Raman spectroscopy. Phys. Rev. B 2008, 77, 235403.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunqi Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, J., Liu, H., Wu, B. et al. Production of graphene nanospheres by annealing of graphene oxide in solution. Nano Res. 4, 705–711 (2011). https://doi.org/10.1007/s12274-011-0126-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0126-9

Keywords

Navigation