Skip to main content
Log in

Facile fabrication of all-SWNT field-effect transistors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Field-effect transistors (FETs) have been fabricated using as-grown single-walled carbon nanotubes (SWNTs) for the channel as well as both source and drain electrodes. The underlying Si substrate was employed as the back-gate electrode. Fabrication consisted of patterned catalyst deposition by surface modification followed by dip-coating and synthesis of SWNTs by alcohol chemical vapor deposition (CVD). The electrodes and channel were grown simultaneously in one CVD process. The resulting FETs exhibited excellent performance, with an I ON/I OFF ratio of 106 and a maximum ON-state current (I ON) exceeding 13 μA. The large I ON is attributed to SWNT bundles connecting the SWNT channel with the SWNT electrodes. Bundling creates a large contact area, which results in a small contact resistance despite the presence of Schottky barriers at metallic-semiconducting interfaces. The approach described here demonstrates a significant step toward the realization of metal-free electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Durkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2004, 4, 35–39.

    Article  Google Scholar 

  2. Martel, R.; Wong, H. S. P.; Chan, K.; Avouris, P. Carbon nanotube field effect transistors for logic applications. Proc. IEDM 2001, 159–161.

  3. Appenzeller, J.; Lin, Y. M.; Knoch, J.; Avouris, Ph. Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 2004, 93, 196805.

    Article  CAS  Google Scholar 

  4. Lu, Y.; Bangsaruntip, S.; Wang, X.; Zhang, L.; Nishi, Y.; Dai, H. DNA functionalization of carbon nanotubes for ultrathin atomic layer deposition of high κ dielectrics for nanotube transistors with 60 mv/decade switching. J. Am. Chem. Soc. 2006, 128, 3518–3519.

    Article  CAS  Google Scholar 

  5. Weitz, R. T.; Zschieschang, U.; Effenberger, F.; Klauk, H.; Burghard, M.; Kern, K. High-performance carbon nanotube field effect transistors with a thin gate dielectric based on a self-assembled monolayer. Nano Lett. 2007, 7, 22–27.

    Article  CAS  Google Scholar 

  6. Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.

    Article  CAS  Google Scholar 

  7. Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52.

    Article  CAS  Google Scholar 

  8. Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, Ph. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 1998, 73, 2447–2449.

    Article  CAS  Google Scholar 

  9. Snow, E. S.; Novak, J. P.; Campbell, P. M.; Park, D. Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 2003, 82, 2145–2147.

    Article  CAS  Google Scholar 

  10. Kocabas, C.; Shim, M.; Rogers, J. A. Spatially selective guided growth of high-coverage arrays and random networks of single-walled carbon nanotubes and their integration into electronic devices. J. Am. Chem. Soc. 2006, 128, 4540–4541.

    Article  CAS  Google Scholar 

  11. Zhou, W.; Ding, L.; Yang, S.; Liu, J. Orthogonal orientation control of carbon nanotube growth. J. Am. Chem. Soc. 2010, 132, 336–341.

    Article  CAS  Google Scholar 

  12. Cao, Q.; Zhu, Z. T.; Lemaitre, M. G.; Xia, M. G.; Shim, M.; Rogers, J. A. Transparent flexible organic thin-film transistors that use printed single-walled carbon nanotube electrodes. Appl. Phys. Lett. 2006, 88, 113511.

    Article  Google Scholar 

  13. Tsai, T. Y.; Lee, C. Y.; Tai, N. H.; Tuan, W. H. Transfer of patterned vertically aligned carbon nanotubes onto plastic substrates for flexible electronics and field emission devices. Appl. Phys. Lett. 2009, 95, 013107.

    Article  Google Scholar 

  14. Buia, C.; Buldum, A.; Lu, J. P. Quantum interference effects in electronic transport through nanotube contacts. Phys. Rev. B 2003, 67, 113409.

    Article  Google Scholar 

  15. Garrett, M. P.; Ivanov, I. N.; Gerhardt, R. A.; Puretzky, A. A.; Geohegan, D. B. Separation of junction and bundle resistance in single wall carbon nanotube percolation networks by impedance spectroscopy. Appl. Phys. Lett. 2010, 97, 163105.

    Article  Google Scholar 

  16. Jang, S.; Jang, H.; Lee, Y.; Suh, D.; Baik, S.; Hong, B. H.; Ahn, J. H. Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes. Nanotechnology 2010, 21, 425201.

    Article  Google Scholar 

  17. Kaskela, A.; Nasibulin, A. G.; Timmermans, M. Y.; Aitchison, B.; Papadimitratos, A.; Tian, Y.; Zhu, Z.; Jiang, H.; Brown, D. P.; Zakhidov, A.; Kauppinen, E. I. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett. 2010, 10, 4349–4355.

    Article  CAS  Google Scholar 

  18. Ren, Z. F.; Huang, Z. P.; Wang, D. Z.; Wen, J. G.; Xu, J. W.; Wang, J. H.; Calvet, L. E.; Chen, J.; Klemic, J. F.; Reed, M. A. Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl. Phys. Lett. 1999, 75, 1086–1088.

    Article  CAS  Google Scholar 

  19. Franklin, N. R.; Li, Y.; Chen, R. J.; Javey, A.; Dai, H. Patterned growth of single-walled carbon nanotubes on full 4-inch wafers. Appl. Phys. Lett. 2001, 79, 4571–4573.

    Article  CAS  Google Scholar 

  20. Huang, S.; Dai, L.; Mau, A. W. H. Controlled fabrication of large-scale aligned carbon nanofiber/nanotube patterns by photolithography. Adv. Mater. 2002, 14, 1140–1143.

    Article  CAS  Google Scholar 

  21. Wei, B. Q.; Vajtai, R.; Jung, Y.; Ward, J.; Zhang, R.; Ramanath, G.; Ajayan, P. M. Microfabrication technology: Organized assembly of carbon nanotubes. Nature 2002, 416, 495–496.

    Article  CAS  Google Scholar 

  22. Xiang, R.; Wu, T.; Einarsson, E.; Suzuki, Y.; Murakami, Y.; Shiomi, J.; Maruyama, S. High-precision selective deposition of catalyst for facile localized growth of single-walled carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 10344–10345.

    Article  CAS  Google Scholar 

  23. Soh, H. T.; Quate, C. F.; Morpurgo, A. F.; Marcus, C. M.; Kong, J.; Dai, H. Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes. Appl. Phys. Lett. 1999, 75, 627–629.

    Article  CAS  Google Scholar 

  24. Ohno, Y.; Iwatsuki, S.; Hiraoka, T.; Okazaki, T.; Kishimoto, S.; Maezawa, K.; Shinohara, H.; Mizutani, T. Position-controlled carbon nanotube field-effect transistors fabricated by chemical vapor deposition using patterned metal catalyst. Jpn. J. Appl. Phys. 2003, 42, 4116–4119.

    Article  CAS  Google Scholar 

  25. Murakami, Y.; Miyauchi, Y.; Chiashi, S.; Maruyama, S. Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates. Chem. Phys. Lett. 2003, 377, 49–54.

    Article  CAS  Google Scholar 

  26. Maruyama, S.; Kojima, R.; Miyauchi, Y.; Chiashi, S.; Kohno, M. Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem. Phys. Lett. 2002, 360, 229–234.

    Article  CAS  Google Scholar 

  27. Murakami, Y.; Chiashi, S.; Miyauchi, Y.; Hu, M. H.; Ogura, M.; Okubo, T.; Maruyama, S. Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem. Phys. Lett. 2004, 385, 298–303.

    Article  CAS  Google Scholar 

  28. Maruyama, S.; Einarsson, E.; Murakami, Y.; Edamura, T. Growth process of vertically aligned single-walled carbon nanotubes. Chem. Phys. Lett. 2005, 403, 320–323.

    Article  CAS  Google Scholar 

  29. Einarsson, E.; Kadowaki, M.; Ogura, K.; Okawa, J.; Xiang, R.; Zhang, Z.; Yamamoto, Y.; Ikuhara, Y.; Maruyama, S. Growth mechanism and internal structure of vertically aligned single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 2008, 8, 6093–6098.

    Article  CAS  Google Scholar 

  30. Kreupl, F.; Graham, A. P.; Duesberg, G. S.; Steinhögl, W.; Liebau, M.; Unger, E.; Hönlein, W. Carbon nanotubes in interconnect applications. Microelectron. Eng. 2002, 64, 399–408.

    Article  CAS  Google Scholar 

  31. Nihei, M.; Kawabata, A.; Kondo, D.; Horibe, M.; Sato, S.; Awano, Y. Electrical properties of carbon nanotube bundles for future via interconnects. Jpn. J. Appl. Phys. 2005, 44, 1626–1628.

    Article  CAS  Google Scholar 

  32. Wang, T.; Jeppson, K.; Olofsson, N.; Campbell, E. E. B.; Liu, J. Through silicon vias filled with planarized carbon nanotube bundles. Nanotechnology 2009, 20, 485203.

    Article  Google Scholar 

  33. Fuhrer, M. S.; Nygård, J.; Shih, L.; Forero, M.; Yoon, Y. G.; Mazzoni, M. S. C.; Choi, H. J.; Ihm, J.; Louie, S. G.; Zettl, A.; McEuen, P. L. Crossed nanotube junctions. Science 2000, 288, 494–497.

    Article  CAS  Google Scholar 

  34. Nirmalraj, P. N.; Lyons, P. E.; De, S.; Coleman, J. N.; Boland, J. J. Electrical connectivity in single-walled carbon nanotube networks. Nano Lett. 2009, 9, 3890–3895.

    Article  CAS  Google Scholar 

  35. Geng, H. Z.; Kim, K. K.; So, K. P.; Lee, Y. S.; Chang, Y.; Lee, Y. H. Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J. Am. Chem. Soc. 2007, 129, 7758–7759.

    Article  CAS  Google Scholar 

  36. Futaba, D. N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 2006, 5, 987–994.

    Article  CAS  Google Scholar 

  37. Martel, R.; Derycke, V.; Lavoie, C.; Appenzeller, J.; Chan, K. K.; Tersoff, J.; Avouris, Ph. Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett. 2001, 87, 256805.

    Article  CAS  Google Scholar 

  38. Wind, S. J.; Appenzeller, J.; Martel, R.; Derycke, V.; Avouris, Ph. Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes. Appl. Phys. Lett. 2002, 80, 3817–3819.

    Article  CAS  Google Scholar 

  39. Homma, Y.; Takagi, D.; Kobayashi, Y. Suspended architecture formation process of single-walled carbon nanotubes. Appl. Phys. Lett. 2006, 88, 023115.

    Article  Google Scholar 

  40. Abrams, Z. R.; Hanein, Y. Tube-tube and tube-surface interactions in straight suspended carbon nanotube structures. J. Phys. Chem. B 2006, 110, 21419–21423.

    Article  CAS  Google Scholar 

  41. Xiang, R.; Luo, G.; Yang, Z.; Zhang, Q.; Qian, W.; Wei, F. Temperature effect on the substrate selectivity of carbon nanotube growth in floating chemical vapor deposition. Nanotechnology 2007, 18, 415703.

    Article  Google Scholar 

  42. Hu, M. H.; Murakami, Y.; Ogura, M.; Maruyama, S.; Okubo, T. Morphology and chemical state of Co-Mo catalysts for growth of single-walled carbon nanotubes vertically aligned on quartz substrates. J. Catal. 2004, 225, 230–239.

    Article  CAS  Google Scholar 

  43. Suzuki, S.; Bower, C.; Watanabe, Y.; Zhou, O. Work functions and valence band states of pristine and Cs-intercalated single-walled carbon nanotube bundles. Appl. Phys. Lett. 2000, 76, 4007–4009.

    Article  CAS  Google Scholar 

  44. Heinze, S.; Tersoff, J.; Martel, R.; Derycke, V.; Appenzeller, J.; Avouris, Ph. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 2002, 89, 106801.

    Article  CAS  Google Scholar 

  45. Ishii, H.; Sugiyama, K.; Ito, E.; Seki, K. Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 1999, 11, 605–625.

    Article  CAS  Google Scholar 

  46. Nosho, Y.; Ohno, Y.; Kishimoto, S.; Mizutani, T. n-Type carbon nanotube field-effect transistors fabricated by using Ca contact electrodes. Appl. Phys. Lett. 2005, 86, 073105.

    Article  Google Scholar 

  47. Kim, W.; Javey, A.; Vermesh, O.; Wang, Q.; Li, Y.; Dai, H. Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 2003, 3, 193–198.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeo Maruyama.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aikawa, S., Xiang, R., Einarsson, E. et al. Facile fabrication of all-SWNT field-effect transistors. Nano Res. 4, 580–588 (2011). https://doi.org/10.1007/s12274-011-0114-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0114-0

Keywords

Navigation