Nano Research

, Volume 3, Issue 6, pp 404–411 | Cite as

Ultrafast stretched-pulse fiber laser mode-locked by carbon nanotubes

  • Zhipei Sun
  • Tawfique Hasan
  • Fengqiu Wang
  • Aleksey G. Rozhin
  • Ian H. White
  • Andrea C. Ferrari
Open Access
Research Article

Abstract

Ultrafast fiber sources having short pulses, broad bandwidth, high energy, and low amplitude fluctuations have widespread applications. Stretched-pulse fiber lasers, incorporating segments of normal and anomalous dispersion fibers, are a preferred means to generate such pulses. We realize a stretched-pulse fiber laser based on a nanotube saturable absorber, with 113 fs pulses, 33.5 nm spectral width and ˜0.07% amplitude fluctuation, outperforming current nanotube-based designs.

Keywords

Nanotubes fiber laser saturable absorber ultrafast pulse generation 

References

  1. [1]
    Agrawal, G. P. Applications of Nonlinear Fiber Optics; Academic Press: Boston, 2007.Google Scholar
  2. [2]
    Marshall, J.; Stewart, G.; Whitenett, G. Design of a tunable L-band multi-wavelength laser system for application to gas spectroscopy. Meas. Sci. Technol. 2006, 17, 1023–1031.CrossRefADSGoogle Scholar
  3. [3]
    Okhotnikov, O.; Grudinin, A.; Pessa, M. Ultra-fast fibre laser systems based on SESAM technology: New horizons and applications. New J. Phys. 2004, 6, 177.CrossRefADSGoogle Scholar
  4. [4]
    Nelson, L. E.; Jones, D. J.; Tamura, K.; Haus, H. A; Ippen, E. P. Ultrashort-pulse fiber ring lasers. Appl. Phys. B 1997, 65, 277–294.CrossRefADSGoogle Scholar
  5. [5]
    Fermann, M. E.; Galvanauskas, A.; Sucha, G.; Harter, D. Fiber-lasers for ultrafast optics. Appl. Phys. B 1997, 65, 259–275.CrossRefADSGoogle Scholar
  6. [6]
    Keller, U. Ultrafast solid-state lasers. In Progress in Optics. Wolf, E. Ed.; Elsevier: Amsterdam, 2004.Google Scholar
  7. [7]
    Hasan, T.; Sun, Z. P.; Wang, F.; Bonaccorso, F.; Tan, P. H.; Rozhin, A. G.; Ferrari, A. C. Nanotube-polymer composites for ultrafast photonics. Adv. Mater. 2009, 21, 3874–3899.CrossRefGoogle Scholar
  8. [8]
    Sun, Z. P.; Hasan, T.; Torrisi, F.; Popa, D.; Privitera, G.; Wang, F. Q.; Bonaccorso, F.; Basko, D. M.; Ferrari, A. C. Graphene mode-locked ultrafast laser. ACS Nano 2010, 4, 803–810.CrossRefPubMedGoogle Scholar
  9. [9]
    Set, S. Y.; Yaguchi, H.; Tanaka, Y.; Jablonski, M. Ultrafast fiber pulsed lasers incorporating carbon nanotubes. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 137–146.CrossRefGoogle Scholar
  10. [10]
    Nakazawa, M.; Nakahara, S.; Hirooka, T.; Yoshida, M.; Kaino, T.; Komatsu, K. Polymer saturable absorber materials in the 1.5 μm band using poly-methyl-methacrylate and polystyrene with single-wall carbon nanotubes and their application to a femtosecond laser. Opt. Lett. 2006, 31, 915–917.CrossRefPubMedADSGoogle Scholar
  11. [11]
    Scardaci, V.; Rozhin, A. G.; Hennrich, F.; Milne, W. I.; Ferrari, A. C. Carbon nanotube-polymer composites for photonic devices. Physica E 2007, 37, 115–118.CrossRefADSGoogle Scholar
  12. [12]
    Song, Y. W.; Yamashita, S.; Maruyama, S. Single-walled carbon nanotubes for high-energy optical pulse formation. Appl. Phys. Lett. 2008, 92, 021115.CrossRefADSGoogle Scholar
  13. [13]
    Rozhin, A. G.; Scardaci, V.; Wang, F.; Hennrich, F.; White, I. H.; Milne, W. I.; Ferrari, A. C. Generation of ultra-fast laser pulses using nanotube mode-lockers. Phys. Status Solidi B 2006, 243, 3551–3555.CrossRefADSGoogle Scholar
  14. [14]
    Sun, Z.; Rozhin, A. G.; Wang, F.; Scardaci, V.; Milne, W. I.; White, I. H.; Hennrich, F.; Ferrari, A. C. L-band ultrafast fiber laser mode locked by carbon nanotubes. Appl. Phys. Lett. 2008, 93, 061114.CrossRefADSGoogle Scholar
  15. [15]
    Scardaci, V.; Sun, Z.; Wang, F.; Rozhin, A. G.; Hasan, T.; Hennrich, F.; White, I. H.; Milne, W. I.; Ferrari, A. C. Carbon nanotube polycarbonate composites for ultrafast lasers. Adv. Mater. 2008, 20, 4040–4043.CrossRefGoogle Scholar
  16. [16]
    Wang, F.; Rozhin, A. G.; Scardaci, V.; Sun, Z.; Hennrich, F.; White, I. H.; Milne, W. I.; Ferrari, A. C. Wideband-tuneable, nanotube mode-locked, fibre laser. Nat. Nanotechnol. 2008, 3, 738–742.CrossRefPubMedADSGoogle Scholar
  17. [17]
    Kelleher, E. J. R.; Travers, J. C.; Sun, Z.; Rozhin, A. G.; Ferrari, A. C.; Popov, S. V.; Taylor, J. R. Nanosecond-pulse fiber lasers mode-locked with nanotubes. Appl. Phys. Lett. 2009, 95, 111108.CrossRefADSGoogle Scholar
  18. [18]
    Sun, Z.; Rozhin, A. G.; Wang, F.; Hasan, T.; Popa, D.; O’Neill, W.; Ferrari, A. C. A compact, high power, ultrafast laser mode-locked by carbon nanotubes. Appl. Phys. Lett. 2009, 95, 253102.CrossRefADSGoogle Scholar
  19. [19]
    Solodyankin, M. A.; Obraztsova, E. D.; Lobach, A. S.; Chernov, A. I.; Tausenev, A. V.; Konov, V. I.; Dianov, E. M. Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber. Opt. Lett. 2008, 33, 1336–1338.CrossRefPubMedADSGoogle Scholar
  20. [20]
    Nicholson, J. W.; Windeler, R. S.; DiGiovanni, D. J. Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces. Opt. Express 2007, 15, 9176–9183.CrossRefPubMedADSGoogle Scholar
  21. [21]
    Kieu, K.; Wise, F. W. All-fiber normal-dispersion femtosecond laser. Opt. Express 2008, 16, 11453–11458.CrossRefPubMedADSGoogle Scholar
  22. [22]
    Shohda, F.; Shirato, T.; Nakazawa, M.; Komatsu, K.; Kaino, T. A passively mode-locked femtosecond soliton fiber laser at 1.5 μm with a CNT-doped polycarbonate saturable absorber. Opt. Express 2008, 16, 21191–21198.CrossRefPubMedADSGoogle Scholar
  23. [23]
    Senoo, Y.; Nishizawa, N.; Sakakibara, Y.; Sumimura, K.; Itoga, E.; Kataura, H.; Itoh, K. Polarization-maintaining, high-energy, wavelength-tunable, Er-doped ultrashort pulse fiber laser using carbon-nanotube polyimide film. Opt. Express 2009, 17, 20233–20241.CrossRefPubMedADSGoogle Scholar
  24. [24]
    Della Valle, G.; Osellame, R.; Galzerano, G.; Chiodo, N.; Cerullo, G.; Laporta, P.; Svelto, O.; Morgner, U.; Rozhin, A. G.; Scardaci, V.; Ferrari, A. C. Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser. Appl. Phys. Lett. 2006, 89, 231115.CrossRefADSGoogle Scholar
  25. [25]
    Fong, K. H.; Kikuchi, K.; Goh, C. S.; Set, S. Y.; Grange, R.; Haiml, M.; Schlatter, A.; Keller, U. Solid-state Er:Yb:glass laser mode-locked by using single-wall carbon nanotube thin film. Opt. Lett. 2007, 32, 38–40.CrossRefPubMedADSGoogle Scholar
  26. [26]
    Schibli, T. R.; Minoshima, K.; Kataura, H.; Itoga, E.; Minami, N.; Kazaoui, S.; Miyashita, K.; Tokumoto, M.; Sakakibara, Y. Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes. Opt. Express 2005, 13, 8025–8031.CrossRefPubMedADSGoogle Scholar
  27. [27]
    Schmidt, A.; Rivier, S.; Steinmeyer, G.; Yim, J. H.; Cho, W. B.; Lee, S.; Rotermund, F.; Pujol, M. C.; Mateos, X.; Aguilo, M.; Diaz, F.; Petrov, V.; Griebner, U. Passive mode locking of Yb:KLuW using a single-walled carbon nanotube saturable absorber. Opt. Lett. 2008, 33, 729–731.CrossRefPubMedADSGoogle Scholar
  28. [28]
    Song, Y. W.; Yamashita, S.; Goh, C. S.; Set, S. Y. Passively mode-locked lasers with 17.2-GHz fundamental-mode repetition rate pulsed by carbon nanotubes. Opt. Lett. 2007, 32, 430–432.CrossRefPubMedADSGoogle Scholar
  29. [29]
    Tamura, K.; Ippen, E. P.; Haus, H. A.; Nelson, L. E. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. Opt. Lett. 1993, 18, 1080–1082.CrossRefPubMedADSGoogle Scholar
  30. [30]
    Haus, H. A.; Tamura, K.; Nelson, L. E.; Ippen, E. P. Stretched-pulse additive-pulse mode-locking in fiber ring lasers-Theory and experiment. IEEE J. Quantum Electron. 1995, 31, 591–598.CrossRefADSGoogle Scholar
  31. [31]
    Tamura, K.; Nelson, L. E.; Haus, H. A.; Ippen, E. P. Soliton versus nonsoliton operation of fiber ring lasers. Appl. Phys. Lett. 1994, 64, 149–151.CrossRefADSGoogle Scholar
  32. [32]
    Ilday, F. O.; Wise, F. W.; Sosnowski, T. High-energy femtosecond stretched-pulse fiber laser with a nonlinear optical loop mirror. Opt. Lett. 2002, 27, 1531–1533.CrossRefPubMedADSGoogle Scholar
  33. [33]
    Lefort, L.; Price, J. H. V.; Richardson, D. J.; Spuhler, G. J.; Paschotta, R.; Keller, U.; Fry, A. R.; Weston, J. Practical low-noise stretched-pulse Yb3+-doped fiber laser. Opt. Lett. 2002, 27, 291–293.CrossRefPubMedADSGoogle Scholar
  34. [34]
    O’Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C.; Ma, J. P.; Hauge, R. H.; Weisman, R. B.; Smalley, R. E. Band gap fluorescence from individual single-walled carbon nanotubes. Science 2002, 297, 593–596.CrossRefPubMedADSGoogle Scholar
  35. [35]
    Moore, V. C.; Strano, M. S.; Haroz, E. H.; Hauge, R. H.; Smalley, R. E. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 2003, 3, 1379–1382.CrossRefADSGoogle Scholar
  36. [36]
    Haggenmueller, R.; Rahatekar, S. S.; Fagan, J. A.; Chun, J. H.; Becker, M. L.; Naik, R. R.; Krauss, T.; Carlson, L.; Kadla, J. F.; Trulove, P. C., et al. Comparison of the quality of aqueous dispersions of single wall carbon nanotubes using surfactants and biomolecules. Langmuir 2008, 24, 5070–5078.CrossRefPubMedGoogle Scholar
  37. [37]
    Hasan, T; Tan, P. H.; Bonaccorso, F; Rozhin, A. G.; Scardaci, V.; Milne, W. I.; Ferrari, A. C. Polymer-assisted isolation of single wall carbon nanotubes in organic solvents for optical-quality nanotube polymer composites. J. Phys. Chem. C 2008, 112, 20227–20232.CrossRefGoogle Scholar
  38. [38]
    Bandyopadhyaya, R.; Nativ-Roth, E.; Regev, O.; Yerushalmi-Rozen, R. Stabilization of individual carbon nanotubes in aqueous solutions. Nano Lett. 2002, 2, 25–28.CrossRefADSGoogle Scholar
  39. [39]
    Minami, N.; Kim, Y. J.; Miyashita, K.; Kazaoui, S.; Nalini, B. Cellulose derivatives as excellent dispersants for single-wall carbon nanotubes as demonstrated by absorption and photoluminescence spectroscopy. Appl. Phys. Lett. 2006, 88, 093123.CrossRefADSGoogle Scholar
  40. [40]
    Birkin, P. R.; Offin, D. G.; Joseph, P. F.; Leighton, T. G. Cavitation, shock waves and the invasive nature of sonoelectrochemistry. J. Phys. Chem. B 2005, 109, 16997–17005.CrossRefPubMedGoogle Scholar
  41. [41]
    Lebedkin, S.; Schweiss, P.; Renker, B.; Malik, S.; Hennrich, F.; Neumaier, M.; Stoermer, C.; Kappes, M. M. Single-wall carbon nanotubes with diameters approaching 6 nm obtained by laser vaporization. Carbon 2002, 40, 417–423.CrossRefGoogle Scholar
  42. [42]
    Hennrich, F.; Wellmann, R.; Malik, S.; Lebedkin, S.; Kappes, M. M. Reversible modification of the absorption properties of single-walled carbon nanotube thin films via nitric acid exposure. Phys. Chem. Chem. Phys. 2003, 5, 178–183.CrossRefGoogle Scholar
  43. [43]
    Piscanec, S.; Lazzeri, M.; Robertson, J.; Ferrari, A. C.; Mauri, F. Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects. Phys. Rev. B 2007, 75, 035427.CrossRefADSGoogle Scholar
  44. [44]
    Piscanec, S.; Lazzeri, M.; Mauri, F.; Ferrari, A. C.; Robertson, J. Kohn anomalies and electron-phonon interactions in graphite. Phys. Rev. Lett. 2004, 93, 185503.CrossRefPubMedADSGoogle Scholar
  45. [45]
    Telg, H.; Maultzsch, J.; Reich, S.; Hennrich, F.; Thomsen, C. Chirality distribution and transition energies of carbon nanotubes. Phys. Rev. Lett. 2004, 93, 177401.CrossRefPubMedADSGoogle Scholar
  46. [46]
    Telg, H.; Maultzsch, J.; Reich, S.; Thomsen, C. Resonant-Raman intensities and transition energies of the E11 transition in carbon nanotubes. Phys. Rev. B 2006, 74, 115415.CrossRefADSGoogle Scholar
  47. [47]
    Fantini, C.; Jorio, A.; Souza, M.; Strano, M. S.; Dresselhaus, M. S.; Pimenta, M. A. Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: Environment and temperature effects. Phys. Rev. Lett. 2004, 93, 147406.CrossRefPubMedADSGoogle Scholar
  48. [48]
    Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y. Optical properties of single-wall carbon nanotubes. Synth. Met. 1999, 103, 2555–2558.CrossRefGoogle Scholar
  49. [49]
    Dennis, M. L.; Duling, I. N. Experimental study of sideband generation in femtosecond fiber lasers. IEEE J. Quantum Electron. 1994, 30, 1469–1477.CrossRefADSGoogle Scholar
  50. [50]
    Koechner, W. Solid-State Laser Engineering; Springer: Berlin, 1999.MATHGoogle Scholar
  51. [51]
    Spielmann, C.; Curley, P. F.; Brabec, T.; Krausz, F. Ultrabroadband femtosecond lasers. IEEE J. Quantum Electron. 1994, 30, 1100–1114.CrossRefADSGoogle Scholar
  52. [52]
    Agrawal, G. P. Nonlinear Fiber Optics; Academic Press: San Diego, 2001.Google Scholar
  53. [53]
    von der Linde, D. Characterization of the noise in continuously operating mode-locked lasers. Appl. Phys. B 1986, 39, 201–217.CrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Zhipei Sun
    • 1
  • Tawfique Hasan
    • 1
  • Fengqiu Wang
    • 1
  • Aleksey G. Rozhin
    • 1
  • Ian H. White
    • 1
  • Andrea C. Ferrari
    • 1
  1. 1.Department of EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations