Nano Research

, Volume 3, Issue 5, pp 369–378 | Cite as

Direct electrochemistry of cytochrome c at a hierarchically nanostructured TiO2 quantum electrode

Open Access
Research Article

Abstract

Monodisperse TiO2 nanoparticles and urchin-like hierarchical TiO2 nanospheres assembled with ultrathin quantum nanowires (about 2 nm) have been synthesized by a simple template-free wet chemical method. The morphology, structure, and crystallinity of the TiO2 nanomaterials were investigated by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and high resolution transmission electron microscopy (HRTEM). Electrochemical measurements with the hierarchically nanostructured TiO2 nanospheres as an electrode showed much better reversibility for direct electrochemistry of cytochrome c (cyt c) and much higher sensitivity than for an electrode composed of the monodisperse TiO2 nanoparticles. The excellent performance of the hierarchical TiO2 nanospheres may result from a quantum size effect, and their favorable nanostructure (with the presence of an abundance of both uniform macropores and mesopores), excellent structural stability and high specific surface area. The relative ionic strength had significant effect on the direct electrochemistry. Very high ionic strengths relative to cyt c concentration (I/c) induced a conformational change of cyt c on the nanostructure-coated electrode, from the native state to a partially unfolded one in 25 mmol/L phosphate buffer solution (pH 6.8).

Keywords

Hierarchically nanostructured TiO2 cytochrome c ionic strength bioelectrochemistry 

References

  1. [1]
    Chen, H. J.; Wang, Y. L.; Dong, S. J.; Wang, E. K. Direct electrochemistry of cytochrome c at gold electrode modified with fumed silica. Electroanalysis 2005, 17, 1801–1805.CrossRefGoogle Scholar
  2. [2]
    Stoll, C.; Kudera, S.; Parak, W. J.; Lisdat, F. Quantum dots on gold: Electrodes for photoswitchable cytochrome c electrochemistry. Small 2006, 2, 741–743.CrossRefPubMedGoogle Scholar
  3. [3]
    Feng, J. J.; Xu, J. J.; Chen, H. Y. Direct electron transfer and electrocatalysis of hemoglobin adsorbed onto electrodeposited mesoporous tungsten oxide. Electrochem. Comm. 2006, 8, 77–82.CrossRefGoogle Scholar
  4. [4]
    Rezaei-Zarchi, S.; Saboury, A. A.; Javed, A. Electrochemical study of horseradish peroxidase using the nanosilver-modified graphite electrode and its application to hydrogen peroxide biosensor. J. New Mat. Electrochem. Systems 2008, 11, 199–203.Google Scholar
  5. [5]
    Ni, X. M.; Zhao, Q. B.; Zhang, Y. F.; Song, J. M.; Zheng, H. G.; Yang, K. Large scale synthesis and electrochemical characterization of hierarchical ?-Ni(OH)2 flowers. Solid State Sci. 2006, 8, 1312–1317.CrossRefADSGoogle Scholar
  6. [6]
    Wang, H. E.; Qian, D.; Lu, Z. G.; Li, Y. K.; Cheng, R. J.; Li, Y. J. Facile synthesis and electrochemical properties of hierarchical MnO2 submicrospheres and LiMn2O4 microspheres. J. Phys. Chem. Solids 2007, 68, 1422–1427.CrossRefADSGoogle Scholar
  7. [7]
    Zhang, Y.; Chen, Y. G.; Liu, H.; Zhou, Y. Q.; Li, R. Y.; Cai, M.; Sun, X. L. Three-dimensional hierarchical structure of single crystalline tungsten oxide nanowires: Construction, phase transition, and voltammetric behavior. J. Phys. Chem. C 2009, 113, 1746–1750.CrossRefGoogle Scholar
  8. [8]
    Wang, H. B.; Pan, Q. M.; Cheng, Y. X.; Zhao, J. W.; Yin, G. P. Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries. Electrochim. Acta 2009, 54, 2851–2855.CrossRefGoogle Scholar
  9. [9]
    Geng, Y.; Wang, X. L.; Chen, W.; Cai, Q.; Nan, C. W.; Li, H. D. Synthesis, characterization and application of novel bicontinuous mesoporous silica with hierarchical pore structure. Mater. Chem. Phys. 2009, 116, 254–260.CrossRefGoogle Scholar
  10. [10]
    Ren, H. X.; Huang, X. J.; Yarimaga, O.; Choi, Y. K.; Gu, N. A cauliflower-like gold structure for superhydrophobicity. J. Coll. Interf. Sci. 2009, 334, 103–107.CrossRefGoogle Scholar
  11. [11]
    Jiang, L. Y.; Wu, X. L.; Guo, Y. G.; Wan, L. J. SnO2-based hierarchical nanomicrostructures: Facile synthesis and their applications in gas sensors and lithium-ion batteries. J. Phys. Chem. C 2009, 113, 14213–14219.CrossRefGoogle Scholar
  12. [12]
    Ren, H. X.; Huang, X. J.; Kim, J. H.; Choi, Y. K.; Gu, N. Pt/Au bimetallic hierarchical structure with micro/nano-array via photolithography and electrochemical synthesis: From design to GOT and GPT biosensors. Talanta 2009, 78, 1371–1377.CrossRefPubMedGoogle Scholar
  13. [13]
    Song, M. J.; Hwang, S. W.; Whang, D. Amperometric glucose biosensor based on a Pt-dispersed hierarchically porous electrode. J. Korean Phys. Soc. 2009, 54, 1612–1618.CrossRefGoogle Scholar
  14. [14]
    Cuendet, P.; Grätzel, M. Light-induced reduction of cytochrome c by colloidal TiO2. Bioelectrochem. Bioenerg. 1986, 16, 125–133.CrossRefGoogle Scholar
  15. [15]
    McKenzie, K. J.; Marken, F.; Opallo, M. TiO2 phytate films as hosts and conduits for cytochrome c electrochemistry. Bioelectrochemistry 2005, 66, 41–47.CrossRefPubMedGoogle Scholar
  16. [16]
    Cao, H. M.; Zhu, Y. H.; Tang, L. H.; Yang, X. L.; Li, C. Z. A glucose biosensor based on immobilization of glucose oxidase into 3D macroporous TiO2. Electroanalysis 2008, 20, 2223–2228.CrossRefGoogle Scholar
  17. [17]
    Topoglidis, E.; Lutz, T.; Durrant, J. R.; Palomares, E. Interfacial electron transfer on cytochrome-c sensitised conformally coated mesoporous TiO2 films. Bioelectrochemistry 2008, 74, 142–148.CrossRefPubMedGoogle Scholar
  18. [18]
    Zhang, Y.; He, P. L.; Hu, N. F. Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: Direct electrochemistry and bioelectrocatalysis. Electrochim. Acta 2004, 49, 1981–1988.CrossRefGoogle Scholar
  19. [19]
    Wen, Z. H.; Ci, S. Q.; Li, J. H. Pt nanoparticles inserting in carbon nanotube arrays: Nanocomposites for glucose biosensors. J. Phys. Chem. C 2009, 113, 13482–13487.CrossRefGoogle Scholar
  20. [20]
    Zhang, L.; Zhang, Q.; Li, J. H. Layered titanate nano-sheets intercalated with myoglobin for direct electrochemistry. Adv. Funct. Mater. 2007, 17, 1958–1965.CrossRefGoogle Scholar
  21. [21]
    Cao, X.; Wang, N.; Li, L. D.; Guo, L. Synthesis and characterization of waxberry-like microstructures ZnO for biosensors. Sens. Actuators B 2008, 129, 268–273.CrossRefGoogle Scholar
  22. [22]
    Li, Y.; Sasaki, T.; Shimizu, Y.; Koshizaki, N. Hexagonal-close-packed, hierarchical amorphous TiO2 nanocolumn arrays: Transferability, enhanced photocatalytic activity, and superamphiphilicity without UV irradiation. J. Am. Chem. Soc. 2008, 130, 14755–14762.CrossRefPubMedGoogle Scholar
  23. [23]
    Gong, J.; Yao, P.; Duan, H. W.; Gu, S. H.; Chunyu, L. J. Structural transformation of cytochrome c and apo cytochrome c induced by sulfonated polystyrene. Biomacromolecules 2003, 4, 1293–1300.CrossRefPubMedGoogle Scholar
  24. [24]
    Koppenol, W. F.; Margoliash, E. The asymmetric distribution of charges on the surface of horse cytochrome c. Functional implications. J. Biol. Chem. 1982, 257, 4426–4437.PubMedGoogle Scholar
  25. [25]
    Moore, G. R.; Eley, C. G. S.; Williams, G. Electron transfer reactions of class I cytochromes c. In Advances in Inorganic and Bioinorganic Mechanisms. Sykes, A. G., Ed.; Academic Press: New York, 1984; Vol. 3, pp. 1–96.Google Scholar
  26. [26]
    Armstrong, F. A.; Cox, P. A.; Hill, H. A. O.; Lowe, V. J.; Oliver, B. N. Metal ions and complexes as modulators of protein-interfacial electron transport at graphite electrodes. J. Electroanal. Chem. 1987, 217, 331–366.CrossRefGoogle Scholar
  27. [27]
    Brown, K. R.; Fox, A. P.; Natan, M. J. Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes. J. Am. Chem. Soc. 1996, 118, 1154–1157.CrossRefGoogle Scholar
  28. [28]
    Wang, J. X.; Li, M. X.; Shi, Z. J.; Li, N. Q.; Gu, Z N. Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Anal. Chem. 2002, 74, 1993–1997.CrossRefPubMedGoogle Scholar
  29. [29]
    George, P.; Lyster, R. L. J. Crevice structures in hemoprotein reactions. Proc. Natl. Acad. Sci. USA 1958, 44, 1013–1029.CrossRefPubMedADSGoogle Scholar
  30. [30]
    Moore, G. R.; Huang, Z. X.; Eley, C. G. S.; Barker, H. A.; Williams, G.; Robinson, M. N.; Williams, R. J. P. Electron transfer in biology. The function of cytochrome c. Faraday Discuss. Chem. Soc. 1982, 74, 311–329.CrossRefPubMedGoogle Scholar
  31. [31]
    Ferguson-Miller, S.; Brautigan, D. L.; Margoliash, E. Kinetics of reaction of carboxydinitrophenyl cytochromes c with cytochrome c oxidase. J. Biol. Chem. 1978, 253, 149–159.PubMedGoogle Scholar
  32. [32]
    Szücs, Á.; Noák, M. Stable and reversible electrochemistry of cytochrome c on bare electrodes. Part 1. Effect of ionic strength. J. Electroanal. Chem. 1995, 383, 75–84.CrossRefADSGoogle Scholar
  33. [33]
    Mu, C.; Yu, Y. X.; Liao, W.; Zhao, X. S.; Xu, D. S.; Chen, X. H.; Yu, D. P. Silicon nanotube array/gold electrode for direct electrochemistry of cytochrome c. J. Phys. Chem. B 2007, 111, 1491–1495.CrossRefPubMedGoogle Scholar
  34. [34]
    Nicholson, R. S. Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal. Chem. 1965, 37, 1351–1355.CrossRefGoogle Scholar
  35. [35]
    Moghaddam, A. B.; Ganjali, M. R.; Dinarvand, R.; Razavi, T.; Saboury, A. A.; Moosavi-Movahedi, A. A.; Norouzi, P. Direct electrochemistry of cytochrome c on electro-deposited nickel oxide nanoparticles. J. Electroanal. Chem. 2008, 614, 83–92.CrossRefGoogle Scholar
  36. [36]
    Daido, T.; Akaike, T. Electrochemistry of cytochrome c: Influence of coulombic attraction with indium tin oxide electrode. J. Electroanal. Chem., 1993, 344, 91–106.CrossRefGoogle Scholar
  37. [37]
    Zhou, J. H.; Lu, X. B.; Hu, J. Q.; Li, J. H. Reversible immobilization and direct electron transfer of cytochrome c on pH sensitive polymer interface. Chem. Eur. J., 2007, 13, 2847–2853.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.School of Chemistry and EnvironmentBeijing University of Aeronautics and AstronauticsBeijingChina
  2. 2.School of Material Science and EngineeringJiangsu University of Science and TechnologyJiangsuChina

Personalised recommendations