Nano Research

, Volume 3, Issue 5, pp 339–349 | Cite as

Facile synthesis and application of Ag-chemically converted graphene nanocomposite

  • Jianfeng Shen
  • Min Shi
  • Na Li
  • Bo Yan
  • Hongwei Ma
  • Yizhe Hu
  • Mingxin Ye
Open Access
Research Article

Abstract

An in situ chemical synthesis approach has been employed to prepare an Ag-chemically converted graphene (CCG) nanocomposite. The reduction of graphene oxide sheets was accompanied by generation of Ag nanoparticles. The structure and composition of the nanocomposites were confirmed by means of transmission electron microscopy (TEM), atomic force microscopy (AFM) and X-ray diffraction. TEM and AFM results suggest a homogeneous distribution of Ag nanoparticles (5–10 nm in size) on CCG sheets. The intensities of the Raman signals of CCG in such nanocomposites are greatly increased by the attached silver nanoparticles, i.e., there is surface-enhanced Raman scattering activity. In addition, it was found that the antibacterial activity of free Ag nanoparticles is retained in the nanocomposites, which suggests they can be used as graphene-based biomaterials.

Keywords

graphene graphene oxide nanoparticle silver 

References

  1. [1]
    Rao, C. N. R.; Biswas, K.; Subrahmanyam, K. S.; Govindaraj, A. Graphene, the new nanocarbon. J. Mater. Chem. 2009, 19, 2457–2469.CrossRefGoogle Scholar
  2. [2]
    Sykes, E.; C. H. Surface assembly. Graphene goes undercover. Nat. Chem. 2009, 1, 175–176.CrossRefGoogle Scholar
  3. [3]
    Wu, J. S.; Pisula, W.; Müllen, K. Graphenes as potential material for electronics. Chem. Rev. 2007, 107, 718–747.CrossRefPubMedGoogle Scholar
  4. [4]
    Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A. Graphene: The new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 2009, 48, 7752–7777.CrossRefGoogle Scholar
  5. [5]
    Zhu, J. Graphene production: New solutions to a new problem. Nat. Nanotech. 2008, 3, 528–529.CrossRefGoogle Scholar
  6. [6]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefPubMedADSGoogle Scholar
  8. [8]
    Ni, Z. H.; Wang, H. M.; Kasim, J.; Fan, H. M.; Yu, T.; Wu, Y. H.; Feng, Y. P.; Shen, Z. X. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 2007, 7, 2758–2763.CrossRefPubMedADSGoogle Scholar
  9. [9]
    Liu, H. T.; Ryu, S. Y.; Chen, Z.; Steigerwald, M. L.; Nuckolls, C.; Brus, L. E. Photochemical reactivity of graphene. J. Am. Chem. Soc. 2009, 131, 17099–17101.CrossRefPubMedGoogle Scholar
  10. [10]
    Ishigami, M.; Chen, J. H.; Cullen, W. G.; Fuhrer, M. S.; Williams, E. D. Atomic structure of graphene on SiO2. Nano Lett. 2007, 7, 1643–1648.CrossRefPubMedADSGoogle Scholar
  11. [11]
    Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60–63.CrossRefPubMedADSGoogle Scholar
  12. [12]
    Konatham, D.; Striolo, A. Molecular design of stable graphene nanosheets dispersions. Nano Lett. 2008, 8, 4630–4641.CrossRefPubMedADSGoogle Scholar
  13. [13]
    Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L. Raman imaging of graphene. Solid State Commun. 2007, 143, 44–46.CrossRefADSGoogle Scholar
  14. [14]
    Liang, M. H.; Zhi, L. J. Graphene-based electrode materials for rechargeable lithium batteries. J. Mater. Chem. 2009, 19, 5871–5878.CrossRefGoogle Scholar
  15. [15]
    Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen S. T.; Ruoff R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.CrossRefPubMedADSGoogle Scholar
  16. [16]
    Blake, P.; Brimicombe, P. D.; Nair, R. R.; Booth, T. J.; Jiang, D.; Schedin, F.; Ponomarenko, L. A.; Morozov, S. V.; Gleeson, H. F.; Hill, E. W.; Geim, A. K.; Novoselov, K. S. Graphene-based liquid crystal device. Nano Lett. 2008, 8, 1704–1708.CrossRefPubMedADSGoogle Scholar
  17. [17]
    Zu, S. Z.; Han, B. H. Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: formation of supramolecular hydrogel. J. Phys. Chem. C 2009, 113, 13651–13657.CrossRefGoogle Scholar
  18. [18]
    Wang, X.; Zhi, L.; Müellen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323–327.CrossRefPubMedADSGoogle Scholar
  19. [19]
    Hong, W. J.; Xu, Y. X.; Lu, G. W.; Li, C.; Shi, G. Q. Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem. Commun. 2008, 10, 1555–1558.CrossRefGoogle Scholar
  20. [20]
    Zhao, L.; Zhao, L.; Xu, Y. X.; Qiu, T. F.; Zhi, L. J.; Shi, G. Q. Polyaniline electrochromic devices with transparent graphene electrodes. Electrochim. Acta 2009, 55, 491–497.CrossRefGoogle Scholar
  21. [21]
    Fan, F. R.; Park, S.; Zhu, Y.; Ruoff, R. S.; Bard, A. J. Electrogenerated chemiluminescence of partially oxidized highly oriented pyrolytic graphite surfaces and of graphene oxide nanoparticles. J. Am. Chem. Soc. 2009, 131, 937–939.CrossRefPubMedGoogle Scholar
  22. [22]
    Robinson, J. T.; Zalalutdinov, M.; Baldwin, J. W.; Snow, E. S.; Wei, Z. Q.; Sheehan, P.; Houston, B. H. Wafer-scale reduced graphene oxide films for nanomechanical devices. Nano Lett. 2008, 8, 3441–3445.CrossRefPubMedADSGoogle Scholar
  23. [23]
    Shan, C. S.; Yang, H. F.; Han, D. X.; Zhang, Q. X.; Ivaska, A.; Niu, L. Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine. Langmuir 2009, 25, 12030–12033.CrossRefPubMedGoogle Scholar
  24. [24]
    Akhavan, O.; Ghaderi, E. Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J. Phys. Chem. C 2009, 113, 20214–20220.CrossRefGoogle Scholar
  25. [25]
    Eda, G.; Chhowalla, M. Graphene-based composite thin films for electronics. Nano Lett. 2009, 9, 814–818.CrossRefPubMedADSGoogle Scholar
  26. [26]
    Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S.; Nguyen, S. T.; Aksay, I. A.; Prud’Homme, R. K.; Brinson, L. C. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3, 327–331.CrossRefPubMedADSGoogle Scholar
  27. [27]
    Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. P.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.CrossRefPubMedADSGoogle Scholar
  28. [28]
    Paredes, J. I.; Villar-Rodil, S.; Martinez-Alonso, A.; Tascon, J. M. D. Graphene oxide dispersions in organic solvents. Langmuir 2008, 24, 10560–10564.CrossRefPubMedGoogle Scholar
  29. [29]
    Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 10451–10453.CrossRefPubMedADSGoogle Scholar
  30. [30]
    Chen, Y.; Zhang, X.; Yu, P.; Ma, Y. W. Stable dispersions of graphene and highly conducting graphene films: A new approach to creating colloids of graphene monolayers. Chem. Commun. 2009, 4527–4529.Google Scholar
  31. [31]
    Shen, J. F.; Hu, Y. Z.; Shi, M.; Lu, X.; Qin, C.; Li, C.; Ye, M. X. Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem. Mater. 2009, 21, 3514–3520CrossRefGoogle Scholar
  32. [32]
    Dervishi, E.; Li, Z. R.; Watanabe, F.; Biswas, A.; Xu, Y.; Biris, A. R.; Saini, V.; Biris, A. S. Large-scale graphene production by RF-cCVD method. Chem. Commun. 2009, 4061–4063.Google Scholar
  33. [33]
    Somani, P. R.; Somani, S. P.; Umeno, M. Planar nanographenes from camphor by CVD. Chem. Phys. Lett. 2006, 430, 56–59.CrossRefADSGoogle Scholar
  34. [34]
    Worsley, K. A.; Ramesh, P.; Mandal, S. K.; Niyogi, S.; Itkis, M. E.; Haddon, R. C. Soluble graphene derived from graphite fluoride. Chem. Phys. Lett. 2007, 445, 51–56.CrossRefADSGoogle Scholar
  35. [35]
    Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.CrossRefPubMedGoogle Scholar
  36. [36]
    Stankovich, S.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 2006, 44, 3342–3347.CrossRefGoogle Scholar
  37. [37]
    Si, Y. C.; Samulski, E. T. Synthesis of water soluble graphene. Nano Lett. 2008, 8, 1679–1682.CrossRefPubMedADSGoogle Scholar
  38. [38]
    McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud’Homme, R. K.; Aksay, I. A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.CrossRefGoogle Scholar
  39. [39]
    Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud’Homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 2006, 110, 8535–8539.CrossRefPubMedGoogle Scholar
  40. [40]
    Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008, 130, 5856–5857.CrossRefPubMedGoogle Scholar
  41. [41]
    Niyogi, S.; Bekyarova, E.; Itkis, M. E.; McWilliams, J. L.; Hamon, M. A.; Haddon, R. C. Solution properties of graphite and graphene. J. Am. Chem. Soc. 2006, 128, 7720–7721.CrossRefPubMedGoogle Scholar
  42. [42]
    Li, D.; Mueller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.CrossRefPubMedADSGoogle Scholar
  43. [43]
    Li, L. X.; An, B. G.; Nishihara, H.; Shiroya, T.; Aikyo, H.; Isojima, T.; Yamamoto, M.; Kyotani, T. Water-dispersible “carbon nanopods” with controllable graphene layer orientation. Chem. Commun. 2009, 4554–4556.Google Scholar
  44. [44]
    Pasricha, R.; Gupta, S.; Srivastava, A. K. A facile and novel synthesis of Ag-graphene-based nanocomposites. Small 2009, 5, 2253–2259.CrossRefPubMedGoogle Scholar
  45. [45]
    Wang, X. R.; Tabakman, S. M.; Dai, H. Atomic layer deposition of metal oxides on pristine and functionalized graphene. J. Am Chem. Soc. 2008, 130, 8152–8153.CrossRefPubMedGoogle Scholar
  46. [46]
    Muszynski, R.; Seger, B.; Kamat, P. V. Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C 2008, 112, 5263–5266.CrossRefGoogle Scholar
  47. [47]
    Seger, B.; Kamat, P. V. Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J. Phys. Chem. C 2009, 113, 7990–7995.CrossRefGoogle Scholar
  48. [48]
    Kou, R.; Shao, Y. Y.; Wang, D. H.; Engelhard, M. H.; Kwak, J. H.; Wang, J.; Viswanathan, V. V.; Wang, C. M.; Lin, Y. H.; Wang, Y. G; Aksay, I. A.; Liu, J. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem. Commun. 2009, 11, 954–957.CrossRefGoogle Scholar
  49. [49]
    Yoo, E.; Okata, T.; Akita, T. Kohyama, M.; Nakamura, J.; Honma, I. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett. 2009, 9, 2255–2259.CrossRefPubMedADSGoogle Scholar
  50. [50]
    Xu, C.; Wang, X. Fabrication of flexible metal-nanoparticle films using graphene oxide sheets as substrates. Small 2009, 5, 2212–2217.CrossRefPubMedGoogle Scholar
  51. [51]
    Lu, G. H.; Mao, S.; Park, S.; Ruoff, R. S.; Chen, J. H. Facile, noncovalent decoration of graphene oxide sheets with nanocrystals. Nano Res. 2009, 2, 192–200.CrossRefGoogle Scholar
  52. [52]
    Zhou, X. Z.; Huang, X.; Qi, X.; Wu, S. X.; Xue, C.; Boey, F. Y. C.; Yan, Q. Y.; Chen, P.; Zhang, H. In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J. Phys. Chem. C 2009, 113, 10842–10846.CrossRefGoogle Scholar
  53. [53]
    Kong, B. S.; Geng, J. X.; Jung, H. T. Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions. Chem. Commun. 2009, 2174–2176.Google Scholar
  54. [54]
    Hassan, H. M. A.; Abdelsayed, V.; Khder, A. R. S.; AbouZeid, K. M.; Terner, J.; El-Shall, M. S.; Al-Resayes, S. I.; El-Azhary, A. A. Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J. Mater. Chem. 2009, 19, 3832–3837.CrossRefGoogle Scholar
  55. [55]
    Scheuermann, G. M.; Rumi, L.; Steurer, P.; Bannwarth, W.; Mülhaupt, R. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc. 2009, 131, 8262–8270.CrossRefPubMedGoogle Scholar
  56. [56]
    Li, Y. M.; Tang, L. H.; Li, J. H. Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites. Electrochem. Commun. 2009, 11, 846–849.CrossRefGoogle Scholar
  57. [57]
    Yuge, R.; Zhang, M. F.; Tomonari, M.; Yoshitake, T.; Iijima, S.; Yudasaka, M. Site identification of carboxyl groups on graphene edges with Pt derivatives. ACS Nano 2008, 2, 1865–1870.CrossRefPubMedGoogle Scholar
  58. [58]
    Yang, X. Y.; Zhang, X. Y.; Ma, Y. F.; Huang, Y. S.; Wang, Y. S.; Chen, Y. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem. 2009, 19, 2710–2714.CrossRefGoogle Scholar
  59. [59]
    Goncalves, G.; Marques, P. A. A. P.; Granadeiro, C. M.; Nogueira, H. I. S.; Singh, M. K.; Gracio, J. Surface modification of graphene nanosheets with gold nanoparticles: The role of oxygen moieties at graphene surface on gold nucleation and growth. Chem. Mater. 2009, 21, 4796–4802.CrossRefGoogle Scholar
  60. [60]
    Li, F. H.; Yang, H. F.; Shan, C. S.; Zhang, Q. X.; Han, D.; Ivaska, A.; Niu, L. The synthesis of perylene-coated graphene sheets decorated with Au nanoparticles and its electrocatalysis toward oxygen reduction. J. Mater. Chem. 2009, 19, 4022–4025.CrossRefGoogle Scholar
  61. [61]
    Severin, N.; Kirstein, S.; Sokolov, I. M.; Rabe, J. P. Rapid trench channeling of graphenes with catalytic silver nanoparticles. Nano Lett. 2009, 9, 457–461.CrossRefPubMedADSGoogle Scholar
  62. [62]
    Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.CrossRefGoogle Scholar
  63. [63]
    Shen, J. F.; Hu, Y. Z.; Li, C.; Qin, C.; Ye, M. X. Synthesis of amphiphilic graphene nanoplatelets. Small 2009, 5, 82–85.CrossRefPubMedGoogle Scholar
  64. [64]
    Jeng, K. T.; Chien, C. C.; Hsu, N. Y.; Yen, S. C.; Chiou, S. D.; Lin, S. H.; Huang, W. M. Performance of direct methanol fuel cell using carbon nanotube-supported Pt-Ru anode catalyst with controlled composition. J. Power Sources 2006, 160, 97–104.CrossRefGoogle Scholar
  65. [65]
    Li, W. Z.; Liang, C. H.; Zhou, W. J.; Qiu, J. S.; Li, H. Q.; Sun, G. Q.; Xin, Q. Homogeneous and controllable Pt particles deposited on multi-wall carbon nanotubes as cathode catalyst for direct methanol fuel cells. Carbon 2004, 42, 436–439.CrossRefGoogle Scholar
  66. [66]
    Murugan, A. V.; Muraliganth, T.; Manthiram, A. Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy storage. Chem. Mater. 2009, 21, 5004–5006.CrossRefGoogle Scholar
  67. [67]
    Hull, R. V.; Li, L.; Xing, Y. C.; Chusuei, C. C. Pt nanoparticle binding on functionalized multiwalled carbon nanotubes. Chem. Mater. 2006, 18, 1780–1788.CrossRefGoogle Scholar
  68. [68]
    Yang, H. F.; Li, F. H.; Shan, C. S.; Han, D. X.; Zhang, Q. X.; Niu, L.; Ivaska, A. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J. Mater. Chem. 2009, 19, 4632–4638.CrossRefGoogle Scholar
  69. [69]
    Li, F. L.; Song, J. F.; Yang, H. F.; Gan, S. Y.; Zhang, Q. X.; Han, D. X.; Ivaska, A.; Niu, L. One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors. Nanotechnology 2009, 20, 455602.CrossRefPubMedADSGoogle Scholar
  70. [70]
    Si, Y. C.; Samulski, E. T. Exfoliated graphene separated by platinum nanoparticles. Chem. Mater. 2008, 20, 6792–6797.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jianfeng Shen
    • 1
  • Min Shi
    • 1
  • Na Li
    • 1
  • Bo Yan
    • 1
  • Hongwei Ma
    • 1
  • Yizhe Hu
    • 1
  • Mingxin Ye
    • 1
  1. 1.Center of Special Materials and TechnologyFudan UniversityShanghaiChina

Personalised recommendations