Nano Research

, Volume 3, Issue 5, pp 326–338 | Cite as

Formation and optical properties of ZnO:ZnFe2O4 superlattice microwires

  • Yun Li
  • Guozhang Dai
  • Chunjiao Zhou
  • Qinglin Zhang
  • Qiang Wan
  • Limin Fu
  • Jianping Zhang
  • Ruibin Liu
  • Chuanbao Cao
  • Anlian Pan
  • Yunhong Zhang
  • Bingsuo Zou
Open Access
Research Article


Pure ZnO hexagonal microwires and Fe(III)-doped ZnO microwires (MWs) with a novel rectangular cross section were synthesized in a confined chamber by a convenient one-step thermal evaporation method. An oriented attachment mechanism is consistent with a vapor-solid growth process. Photoluminescence (PL) and Raman spectroscopy of the Fe(III)-doped ZnO MWs and in situ spectral mappings indicate a quasi-periodic distribution of Fe(III) along a one-dimensional (1-D) superlattice ZnO:ZnFe2O4 wire, while PL mapping shows the presence of optical multicavities and related multimodes. The PL spectra at room temperature show weak near-edge doublets (376 nm and 383 nm) and a broad band (450–650 nm) composed of strong discrete lines, due to a 1-D photonic crystal structure. Such a 1-D coupled optical cavity material may find many applications in future photonic and spintronic devices.


ZnO superlattice microwire micro-photoluminescence micro-Raman spectroscopy 


  1. [1]
    Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897–1899.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Duan, X. F.; Huang, Y.; Agarwal, R.; Lieber, C. M. Single nanowire injection lasers. Nature 2003, 421, 241–245.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Cui, Y.; Wei, Q. Q.; Park, H. K.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Barrelet, C. J.; Bao, J. M.; Lonèar, M.; Park, H. G.; Capasso, F.; Lieber, C. M. Hybrid single-nanowire photonic crystal and microresonator structures. Nano Lett. 2006, 6, 11–15.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Agarwal, R.; Barrelet, C. J.; Lieber, C. M. Lasing in single cadmium sulfide nanowire optical cavities. Nano Lett. 2005, 5, 917–920.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Gradečak, S.; Qian, F.; Li, Y.; Park, H. G.; Lieber, C. M. GaN nanowire lasers with low lasing thresholds. Appl. Phys. Lett. 2005, 87, 173111.CrossRefADSGoogle Scholar
  7. [7]
    Pan, A. L.; Liu, R. B.; Wang, F. F.; Xie, S. S.; Zou, B. S.; Zacharias, M.; Wang Z. L. High-quality alloyed CdSxSe1?x whiskers as waveguides with tunable stimulated emission. J. Phys. Chem. B 2006, 110, 22313–22317.CrossRefPubMedGoogle Scholar
  8. [8]
    Schmidt-Mende, L.; MacManus-Driscoll, J. L. ZnO-nanostructures, defects, and devices. Mater. Today 2007, 10, 40–48.CrossRefGoogle Scholar
  9. [9]
    Gorla, C. R.; Emanetoglu, N. W.; Liang, S.; Mayo, W. E.; Lu, Y.; Wraback, M.; Shen, H. Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (01–12) sapphire by metalorganic chemical vapor deposition. J. Appl. Phys. 1999, 85, 2595–2602.CrossRefADSGoogle Scholar
  10. [10]
    Wang, X. D.; Zhou, J.; Song, J. H.; Liu, J.; Xu, N. S.; Wang, Z. L. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 2006, 6, 2768–2772.CrossRefPubMedADSGoogle Scholar
  11. [11]
    Jang, E. S.; Won, J. L.; Hwang, S. J.; Choy, J. H. Fine tuning of the face orientation activity. Adv. Mater. 2006, 18, 3309–3312.CrossRefGoogle Scholar
  12. [12]
    Martin, P. M.; Good, M. S.; Johnston, J. W.; Posakony, G. J.; Bond, L. J.; Crawford, S. L. Piezoelectric films for 100-MHz ultrasonic transducers. Thin Solid Films 2000, 379, 253–258.CrossRefADSGoogle Scholar
  13. [13]
    Chang, P. C.; Fan, Z. Y.; Chien, C. J.; Stichtenoth, D.; Ronning, C.; Lu, J. G. High-performance ZnO nanowire field effect transistors. Appl. Phys. Lett. 2006, 89, 133113.CrossRefADSGoogle Scholar
  14. [14]
    Fan, Z. Y.; Lu, J. G. Zinc oxide nanostructures: Synthesis and properties. J. Nanosci. Nanotechnol. 2005, 5, 1561–1573.CrossRefPubMedGoogle Scholar
  15. [15]
    Law, M.; Sirbuly, D. J.; Johnson, J. C.; Goldberger, J.; Saykally, R. J.; Yang, P. D. Nanoribbon waveguides for subwavelength photonics integration. Science 2004, 305, 1269–1273.CrossRefPubMedADSGoogle Scholar
  16. [16]
    Liu, C. H.; Zapien, J. A.; Yao, Y.; Meng, X. M.; Lee, C. S.; Fan, S. S.; Lifshitz, Y.; Lee, S. T. High-density, ordered ultraviolet light-emitting ZnO nanowire arrays. Adv. Mater. 2003, 15, 838–841.CrossRefGoogle Scholar
  17. [17]
    Yuhas, B. D.; Zitoun, D. O.; Pauzauskie, P. J.; He, R. R.; Yang, P. D. Transition-metal doped zinc oxide nanowires. Angew. Chem. Int. Ed. 2006, 45, 420–423.CrossRefGoogle Scholar
  18. [18]
    Liu, T.; Xu, H. R.; Chin, W. S.; Yang, P.; Yong, Z. H.; Wee, A. T. S. Local structures of Zn1?xTMxO (TM = Co, Mn, and Cu) nanoparticles studied by X-ray absorption fine structure Spectroscopy and multiple scattering calculations. J. Phys. Chem. C. 2008, 112, 13410–13418.CrossRefGoogle Scholar
  19. [19]
    Chu, D. W.; Zeng, Y. P.; Jiang, D. L. Synthesis of roomtemperature ferromagnetic Co-doped ZnO nanocrystals under a high magnetic field. J. Phys. Chem. C 2007, 111, 5893–5897.CrossRefGoogle Scholar
  20. [20]
    Yan, H. L.; Zhong, X. L.; Wang, J. B.; Huang, G. L.; Ding, S. L.; Zhou, G. C.; Zhou, Y. C. Cathodoluminescence and room temperature ferromagnetism of Mn-doped ZnO nanorod arrays grown by chemical vapor deposition. Appl. Phys. Lett. 2007, 90, 082503.CrossRefADSGoogle Scholar
  21. [21]
    Barick, K. C.; Aslam, M.; Dravid, V. P.; Bahadur, D. Self-aggregation and assembly of size-tunable transition metal doped ZnO nanocrystals. J. Phys. Chem. C 2008, 112, 15163–15170.CrossRefGoogle Scholar
  22. [22]
    Kundaliya, D. C.; Ogale, S. B.; Lofland, S. E.; Dhar, S.; Metting, C. J.; Shinde, S. R.; Ma, Z.; Varughese, B.; Ramanujachary, K. V.; Salamanca-Riba, L.; Venkatesan, T. On the origin of high-temperature ferromagnetism in the low-temperature-processed Mn-Zn-O system. Nat. Mater. 2004, 3, 709–714.CrossRefPubMedADSGoogle Scholar
  23. [23]
    Jalbout, A. F.; Chen, H. N.; Whitternburg, S. L. Monte Carlo simulation on the indirect exchange interactions of Co-doped ZnO film. Appl. Phys. Lett. 2002, 81, 2217–2219.CrossRefADSGoogle Scholar
  24. [24]
    Xu, C. X.; Sun, X. W.; Dong, Z. L.; Yu, M. B.; Xiong, Y. Z.; Chen, J. S. Magnetic nanobelts of iron-doped zinc oxide. Appl. Phys. Lett. 2005, 86, 173110.CrossRefADSGoogle Scholar
  25. [25]
    Wang, Y. S.; Thomas, P. J.; O’Brien, P. Optical properties of ZnO nanocrystals doped with Cd, Mg, Mn, and Fe ions. J. Phys. Chem. B 2006, 110, 21412–21415.CrossRefPubMedGoogle Scholar
  26. [26]
    Sato-Berrú, R. Y.; Vázquez-Olmos, A.; Fernández-Osorio, A. L.; Sotres-Martínez, S. Micro- Raman investigation of transition-metal-doped ZnO nanoparticles. J. Raman Spectrosc. 2007, 38, 1073–1076.CrossRefADSGoogle Scholar
  27. [27]
    Baek, S. H.; Song, J. J.; Lim, S. W. Improvement of the optical properties of ZnO nanorods by Fe doping. Physica B 2007, 399, 101–104.CrossRefADSGoogle Scholar
  28. [28]
    Bando, K.; Sawabe, T.; Asaka, K.; Masumoto, Y. Room-temperature excitonic lasing from ZnO single nanobelts. Lumin J. 2004, 108, 385–388.CrossRefGoogle Scholar
  29. [29]
    van Vugt, L. K.; Ruhle, S.; Vanmaekelbergh, D. Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire. Nano Lett. 2006, 6, 2707–2711.CrossRefPubMedADSGoogle Scholar
  30. [30]
    Yan, H. Q.; Johnson, J.; Law, M.; He, R. R.; Knutsen, K.; McKinney, J. R.; Pham, J.; Saykally, R.; Yang, P. D. ZnO nanoribbon microcavity lasers. Adv. Mater. 2003, 15, 1907–1911.CrossRefGoogle Scholar
  31. [31]
    Czekalla, C.; Sturm, C.; Schmidt-Grund, R.; Cao, B. Q.; Lorenz, M.; Grundmann, M. Whispering gallery mode lasing in zinc oxide microwires. Appl. Phys. Lett. 2008, 92, 241102.CrossRefADSGoogle Scholar
  32. [32]
    Johnson, J. C.; Choi, H. J.; Knutsen, K.; Schaller, R. D.; Yang, P. D.; Saykally, R. J. Single gallium nitride nanowire lasers. Nat. Mater. 2002, 1, 106–110.CrossRefPubMedADSGoogle Scholar
  33. [33]
    Zhao, Y. H.; Abraham, M. H.; Zissimos, A. M. Determination of McGowan volumes for ions and correlation with van der Waals volumes. J. Chem. Inf. Comput. Sci. 2003, 43, 1848–1854.PubMedGoogle Scholar
  34. [34]
    Xiong, Q. H.; Chen, G.; Acord, J. D.; Liu, X.; Zengel, J. J.; Gutierrez, H. R.; Redwing, J. M.; Lew Yan Voon, L. C.; Lassen, B.; Eklund, P. C. Optical properties of rectangular cross-sectional ZnS nanowires. Nano Lett. 2004, 4, 1663–1668.CrossRefADSGoogle Scholar
  35. [35]
    Zhang, D. F.; Sun, L. D.; Yin, J. L.; Yan, C. H.; Wang, R. M. Attachment-driven morphology evolvement of rectangular ZnO nanowires. J. Phys. Chem. B 2005, 109, 8786–8790.CrossRefPubMedGoogle Scholar
  36. [36]
    Robinson, R. D.; Sadtler, B.; Demchenko, D. O.; Erdonmez, C. K.; Wang, L. W.; Alivisatos, A. P. Spontaneous superlattice formation in nanorods through partial cation exchange. Science 2007, 317, 355–358.CrossRefPubMedADSGoogle Scholar
  37. [37]
    Arguello, C. A.; Rousseau, D. L.; Porto, S. P. S. First-order Raman effect in wurtzite-type crystals. Phys. Rev. 1969, 181, 1351–1363.CrossRefADSGoogle Scholar
  38. [38]
    Cuscó, R.; Alarcón-Lladó, E.; Ibáñez, J.; Artús, L. Jimenez, J.; Wang, B. G.; Callahan, M. J. Temperature dependence of Raman scattering in ZnO. Phys. Rev. B 2007, 75, 165202.CrossRefADSGoogle Scholar
  39. [39]
    Gupta, V.; Blattacharya, P.; Yusuk, Y. I.; Sreenivas, K.; Katiyar, R. S. Optical phonon modes in ZnO nanorods on Si prepared by pulsed laser deposition. J. Cryst. Growth. 2006, 287, 39–43.CrossRefADSGoogle Scholar
  40. [40]
    Wang, X. F.; Xu, J. B.; Zhang, B.; Yu, H. G.; Wang, J.; Zhang, X. X.; Yu, J. G.; Li, Q. Signature of intrinsic high-temperature ferromagnetism in cobalt-doped zinc oxide nanocrystals. Adv. Mater. 2006, 18, 2476–2480.CrossRefGoogle Scholar
  41. [41]
    Wang, J. B.; Zhong, H. M.; Li, Z. F.; Lu, W. Raman study for E 2 phonon of ZnO in Zn1?xMnxO nanoparticles. J. Appl. Phys. 2005, 97, 086105.CrossRefADSGoogle Scholar
  42. [42]
    Islam, E.; Sakai, A.; Onodera, A. Li-concentration dependence of micro-Raman spectra in ferroelectric-semiconductor Zn1Li1?xO. J. Phys. Soc. Jpn. 2002, 71, 1594–1597.CrossRefADSGoogle Scholar
  43. [43]
    Liu, R. B.; Pan, A. L.; Fan, H. M.; Wang, F. F.; Shen, Z. X.; Yang, G. Z.; Xie, S. S.; Zou, B. S. Phonon-assisted stimulated emission in Mn-doped ZnO nanowires. J. Phys. Condens. Matter 2007, 19, 136206.CrossRefADSGoogle Scholar
  44. [44]
    Wang, R. P.; Xu, G.; Jin, P. Size dependence of electronphonon coupling in ZnO nanowires. Phys. Rev. B 2004, 69, 113303.CrossRefADSGoogle Scholar
  45. [45]
    Zeng, H. B.; Cai, W. P.; Cao, B. Q.; Hu, J. L.; Li, Y.; Liu, P. S. Surface optical phonon Raman scattering in Zn/ZnO core-shell structured nanoparticles. Appl. Phys. Lett. 2006, 88, 181905.CrossRefADSGoogle Scholar
  46. [46]
    Mohanta, A.; Thareja, R. K. Photoluminescence study of ZnO nanowires grown by thermal evaporation on pulsed laser deposited ZnO buffer layer. J. Appl. Phys. 2008, 104, 044906.CrossRefADSGoogle Scholar
  47. [47]
    Fu, L. M.; Wu, Z. Y.; Ai, X. C.; Zhang, J. P.; Nie, Y. X.; Xie, S. S.; Yang, G. Z.; Zou, B. S. Time-resolved spectroscopic behavior of Fe2O3 and ZnFe2O4 nanocrystals. J. Chem. Phys. 2004, 120, 3406–3413.CrossRefPubMedADSGoogle Scholar
  48. [48] (zinc ferrite pigment-refractive index)

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yun Li
    • 1
  • Guozhang Dai
    • 1
    • 2
  • Chunjiao Zhou
    • 1
  • Qinglin Zhang
    • 1
  • Qiang Wan
    • 1
  • Limin Fu
    • 3
  • Jianping Zhang
    • 3
  • Ruibin Liu
    • 2
  • Chuanbao Cao
    • 2
  • Anlian Pan
    • 2
  • Yunhong Zhang
    • 2
  • Bingsuo Zou
    • 1
    • 2
  1. 1.State Key Laboratory of Chemo/biosensing and Chemometrics (CBSC)Hunan UniversityChangshaChina
  2. 2.School of Materials Science and Engineering (MSE)Beijing Institute of TechnologyBeijingChina
  3. 3.Chemistry DepartmentRenmin University of ChinaBeijingChina

Personalised recommendations