Nano Research

, Volume 3, Issue 5, pp 307–316 | Cite as

Electrocondensation and evaporation of attoliter water droplets: Direct visualization using atomic force microscopy

  • Narendra Kurra
  • Adina Scott
  • Giridhar U. Kulkarni
Open Access
Research Article

Abstract

Working with a biased atomic force microscope (AFM) tip in the tapping mode under ambient atmosphere, attoliter (10−18 L) water droplet patterns have been generated on a patterned carbonaceous surface. This is essentially electrocondensation of water leading to charged droplets, as evidenced from electrostatic force microscopy measurements. The droplets are unusual in that they exhibit a highly corrugated surface and evaporate rather slowly, taking several tens of minutes.

Keywords

Electrocondensation attoliter water droplets biased atomic force microscope (AFM) lithography electron beam induced deposition carbonaceous deposition 

Supplementary material

12274_2010_1034_MOESM1_ESM.pdf (1.1 mb)
Supplementary material, approximately 1.1 MB.

References

  1. [1]
    Verdaguer, A.; Sacha, G. M.; Bluhm, H. Salmeron, M. Molecular structure of water at interfaces: Wetting at the nanometer scale. Chem. Rev. 2006, 106, 1478–1510.CrossRefPubMedGoogle Scholar
  2. [2]
    Salaita, K.; Wang, Y. H.; Mirkin, C. A. Applications of dip-pen nanolithography. Nat. Nanotechnol. 2007, 2, 145–155.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Ginger, D. S.; Zhang, H.; Mirkin, C. A. The evolution of dip-pen nanolithography. Angew. Chem. Int. Ed. 2004, 43, 30–45.CrossRefGoogle Scholar
  4. [4]
    Piner, R. D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A. “Dip-pen” nanolithography. Science 1999, 283, 661–663.CrossRefPubMedGoogle Scholar
  5. [5]
    Li, Y.; Maynor, B. W.; Liu, J. Electrochemical AFM “Dip-pen” nanolithography. J. Am. Chem. Soc. 2001, 123, 2105–2106.CrossRefPubMedGoogle Scholar
  6. [6]
    Sacha, G. M.; Verdaguer, A.; Salmeron, M. Induced water condensation and bridge formation by electric fields in atomic force microscopy. J. Phys. Chem. B 2006, 110, 14870–14873.CrossRefPubMedGoogle Scholar
  7. [7]
    Xie, X. N.; Chung, H. J.; Sow, C. H.; Wee, A. T. S. Nanoscale materials patterning and engineering by atomic force microscopy nanolithography. Mat. Sci. Eng. R: Rep. 2006, 54, 1–48.CrossRefGoogle Scholar
  8. [8]
    Lyuksyutov, S. F.; Vaia, R. A.; Paramonov, P. B.; Juhl, S.; Waterhouse, L.; Ralich, R. M.; Sigalov, G.; Sancaktar, E. Electrostatic nanolithography in polymers using atomic force microscopy. Nat. Mater. 2003, 2, 468–472.CrossRefPubMedADSGoogle Scholar
  9. [9]
    Lyuksyutov, S. F.; Paramonov, P. B.; Sharipov, R. A.; Sigalov, G. Induced nanoscale deformations in polymers using atomic force microscopy. Phys. Rev. B 2004, 70, 174110.CrossRefADSGoogle Scholar
  10. [10]
    Juhl, S.; Phillips, D.; Vaia, R. A.; Lyuksyutov, S. F.; Paramonov, P. B. Precise formation of nanoscopic dots on polystyrene film using z-lift electrostatic lithography. Appl. Phys. Lett. 2004, 85, 3836–3838.CrossRefADSGoogle Scholar
  11. [11]
    Reagan, M. A.; Kashyn, D.; Juhl, S.; Vaia, R. A.; Lyuksyutov, S. F. Electric charging and nanostructure formation in polymeric films using combined amplitude-modulated atomic force microscopy-assisted electrostatic nanolithography and electric force microscopy. Appl. Phys. Lett. 2008, 93, 033109.CrossRefADSGoogle Scholar
  12. [12]
    Martin, C.; Rius, G.; Borrise, X.; Perez-Murano, F. Nanolithography on thin layers of PMMA using atomic force microscopy. Nanotechnology 2005, 16, 1016–1022.CrossRefADSGoogle Scholar
  13. [13]
    Vijaykumar, T.; Kulkarni, G. U. Electrostatic nanolithography on PVP films for patterning metal nanocrystals and fullerenes. Nanotechnology 2007, 18, 445303.CrossRefADSGoogle Scholar
  14. [14]
    Jang, J.; Schatz, G. C.; Ratner, M. A. Capillary force on a nanoscale tip in dip-pen nanolithography. Phys. Rev. Lett. 2003, 90, 156104.CrossRefPubMedADSGoogle Scholar
  15. [15]
    Stifter, T.; Marti, O.; Bhushan, B. Theoretical investigation of the distance dependence of capillary and van der Waals forces in scanning force microscopy. Phys. Rev. B 2000, 62, 13667–13673.CrossRefADSGoogle Scholar
  16. [16]
    Calleja, M.; Tello, M.; Garcia, R. Size determination of field-induced water menisci in noncontact atomic force microscopy. J. Appl. Phys. 2002, 92, 5539–5542.CrossRefADSGoogle Scholar
  17. [17]
    Gómez-Monivas, S.; Sáenz, J. J.; Calleja, M.; García, R. Field-induced formation of nanometer-sized water bridges. Phys. Rev. Lett. 2003, 91, 056101.CrossRefPubMedADSGoogle Scholar
  18. [18]
    Cramer, T.; Zerbetto, F.; García, R. Molecular mechanism of water bridge buildup: Field-induced formation of nanoscale menisci. Langmuir 2008, 24, 6116–6120.CrossRefPubMedGoogle Scholar
  19. [19]
    Schenk, M.; Futing, M.; Reichelt, R. Direct visualization of the dynamic behavior of a water meniscus by scanning electron microscopy. J. Appl. Phys. 1998, 84, 4880–4884.CrossRefADSGoogle Scholar
  20. [20]
    Weeks, B. L.; Vaughn, M. W.; DeYoreo, J. J. Direct imaging of meniscus formation in atomic force microscopy using environmental scanning electron microscopy. Langmuir 2005, 21, 8096–8098.CrossRefPubMedGoogle Scholar
  21. [21]
    Piner, R. D.; Mirkin, C. A. Effect of water on lateral force microscopy in air. Langmuir 1997, 13, 6864–6868.CrossRefGoogle Scholar
  22. [22]
    Méndez-Vilas, A.; Jódar-Reyes, A. B.; González-Martín, M. L. Ultrasmall liquid droplets on solid surfaces: Production, imaging, and relevance for current wetting research. Small 2009, 5, 1366–1390.CrossRefPubMedGoogle Scholar
  23. [23]
    Avramescu, A.; Ueta, A.; Uesugi, K.; Suemune, I. Atomic force microscope lithography on carbonaceous films deposited by electron-beam irradiation. Appl. Phys. Lett. 1998, 72, 716–718.CrossRefADSGoogle Scholar
  24. [24]
    Pérez-Murano, F.; Abadal, G.; Barniol, N.; Aymerich, X.; Servat, J.; Gorostiza, P.; Sanz, F. Nanometer-scale oxidation of Si(100) surfaces by tapping mode atomic force microscopy. J. Appl. Phys. 1995, 78, 6797–6801.CrossRefADSGoogle Scholar
  25. [25]
    Note: Volumes of water condensates are calculated using SPIP software (www.imagemet.com)Google Scholar
  26. [26]
    Pinkerton, T. D.; Scovell, D. L.; Johnson, A. L.; Xia, B.; Medvedev, V.; Stuve, E. M. Electric field effects in ionization of water-ice layers on platinum. Langmuir 1999, 15, 851–856.CrossRefGoogle Scholar
  27. [27]
    Scanning Probe Microscopy and Spectroscopy: Theory, techniques, and applications; Bonnell, D. A., Ed.; Wiley-VCH: New York, 2001.Google Scholar
  28. [28]
    Miura, N.; Ishii, H.; Shirakashi, J. I.; Yamada, A.; Konagai, M. Electron-beam-induced deposition of carbonaceous micro structures using scanning electron microscopy. Appl. Surf. Sci. 1997, 113-114, 269–273.CrossRefADSGoogle Scholar
  29. [29]
    Kim, J. H.; Ahn, S. I.; Kim, J. H.; Zin, W. C. Evaporation of water droplets on polymer surfaces. Langmuir 2007, 23, 6163–6169.CrossRefPubMedGoogle Scholar
  30. [30]
    Hock, C.; Schmidt, M.; Kuhnen, R.; Bartels, C.; Ma, L.; Haberland, H.; v. Issendorff, B. Calorimetric observation of the melting of free water nanoparticles at cryogenic temperatures. Phys. Rev. Lett. 2009, 103, 073401.CrossRefPubMedADSGoogle Scholar
  31. [31]
    Znamenskiy, V.; Marginean, I.; Vertes, A. Solvated ion evaporation from charged water nanodroplets. J. Phys. Chem. A 2003, 107, 7406–7412.CrossRefGoogle Scholar
  32. [32]
    Daub, C. D.; Bratko, D.; Leung, K.; Luzar, A. Electrowetting at the nanoscale. J. Phys. Chem. C 2007, 111, 505–509.CrossRefGoogle Scholar
  33. [33]
    Iribarne, J. V.; Thomson, B. A. On the evaporation of small ions from charged droplets. J. Chem. Phys. 1976, 64, 2287–2294.CrossRefADSGoogle Scholar
  34. [34]
    Krymski., G. F.; Pavlov, G. S. Electrostatic model of water vapor condensation. Dokl. Phys. 2008, 53, 310–311.CrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Narendra Kurra
    • 1
  • Adina Scott
    • 2
  • Giridhar U. Kulkarni
    • 1
  1. 1.Chemistry and Physics of Materials Unit and DST Unit on NanoscienceJawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
  2. 2.Birck Nanotechnology CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations