Nano Research

, Volume 3, Issue 4, pp 271–280 | Cite as

Mechanical properties of ZnO nanowires under different loading modes

  • Feng Xu
  • Qingqun Qin
  • Ashish Mishra
  • Yi Gu
  • Yong Zhu
Open Access
Research Article

Abstract

A systematic experimental and theoretical investigation of the elastic and failure properties of ZnO nanowires (NWs) under different loading modes has been carried out. In situ scanning electron microscopy (SEM) tension and buckling tests on single ZnO NWs along the polar direction [0001] were conducted. Both tensile modulus (from tension) and bending modulus (from buckling) were found to increase as the NW diameter decreased from 80 to 20 nm. The bending modulus increased more rapidly than the tensile modulus, which demonstrates that the elasticity size effects in ZnO NWs are mainly due to surface stiffening. Two models based on continuum mechanics were able to fit the experimental data very well. The tension experiments showed that fracture strain and strength of ZnO NWs increased as the NW diameter decreased. The excellent resilience of ZnO NWs is advantageous for their applications in nanoscale actuation, sensing, and energy conversion.

Keywords

ZnO nanowire mechanical property size effect Young’s modulus fracture 

Supplementary material

12274_2010_1030_MOESM1_ESM.pdf (301 kb)
Supplementary material, approximately 301 KB.

References

  1. [1]
    Wang, Z. L. Zinc oxide nanostructures: Growth, properties and applications. J. Phys.: Condens. Mater. 2004, 16, R829–R858.CrossRefADSGoogle Scholar
  2. [2]
    Zhou, J.; Fei, P.; Gao, Y. F.; Gu, Y. D.; Liu, J.; Bao, G.; Wang, Z. L. Mechanical-electrical triggers and sensors using piezoelectric micowires/nanowires. Nano Lett. 2008, 8, 2725–2730.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Yuan, Q. Z.; Zhao, Y. P.; Li, L. M.; Wang, T. H. Ab initio study of ZnO-based gas-sensing mechanisms: Surface reconstruction and charge transfer. J. Phys. Chem. C 2009, 113, 6107–6113.CrossRefGoogle Scholar
  4. [4]
    Wan, Q.; Li, Q. H.; Chen, Y. J.; Wang, T. H.; He, X. L.; Li, J. P.; Lin, C. L. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 2004, 84, 3654–3656.CrossRefADSGoogle Scholar
  5. [5]
    Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Yang, R. S.; Qin, Y.; Dai, L. M.; Wang, Z. L. Power generation with laterally-packaged piezoelectric fine wires. Nat. Nanotechnol. 2009, 4, 34–39.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Chen, C. Q.; Shi, Y.; Zhang, Y. S.; Zhu, J.; Yan, Y. J. Size dependence of Young’s modulus in ZnO nanowires. Phys. Rev. Lett. 2006, 96, 075505.CrossRefPubMedADSGoogle Scholar
  8. [8]
    Bai, X. D.; Gao, P. X.; Wang, Z. L.; Wang, E. G. Dual-mode mechanical resonance of individual ZnO nanobelts. Appl. Phys. Lett. 2003, 82, 4806.CrossRefADSGoogle Scholar
  9. [9]
    Stan, G.; Ciobanu, C. V.; Parthangal, P. M.; Cook, R. F. Diameter-dependent radial and tangential elastic moduli of ZnO nanowires. Nano Lett. 2007, 7, 3691–3697.CrossRefADSGoogle Scholar
  10. [10]
    Wen, B. W.; Sader, J. E.; Boland, J. J. Mechanical properties of ZnO nanowires. Phys. Rev. Lett. 2008, 101, 175502.CrossRefPubMedADSGoogle Scholar
  11. [11]
    Hoffmann, S.; Ostlund, F.; Michler, J.; Fan, H. J.; Zacharias, M.; Christiansen, S. H.; Ballif, C. Fracture strength and Young’s modulus of ZnO nanowires. Nanotechnology 2007, 18, 205503.CrossRefADSGoogle Scholar
  12. [12]
    Agrawal, R.; Peng, B.; Gdoutos, E. E.; Espinosa, H. D. Elasticity size effects in ZnO nanowires-A combined experimental-computational approach. Nano Lett. 2008, 8, 3668–3674.CrossRefPubMedADSGoogle Scholar
  13. [13]
    Desai, A. V.; Haque, M. A. Mechanical properties of ZnO nanowires. Sensor. Actuat. A: Phys. 2007, 134, 169–176.CrossRefGoogle Scholar
  14. [14]
    Ni, H.; Li, X. D. Young’s modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques. Nanotechnology 2006, 17, 3591–3597.CrossRefPubMedADSGoogle Scholar
  15. [15]
    Zhu, Y.; Moldovan, N.; Espinosa, H. D. A microelectromechanical load sensor used for in situ electron and X-ray microscopy tensile testing of nanostructures. Appl. Phys. Lett. 2005, 86, 013506.CrossRefADSGoogle Scholar
  16. [16]
    Zhu, Y.; Espinosa, H. D. An electro-mechanical material testing system for in situ electron microscopy and applications. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 14503–14508.CrossRefPubMedADSGoogle Scholar
  17. [17]
    Park, H. S.; Cai, W.; Espinosa, H. D.; Huang, H. Mechanics of crystalline nanowires. MRS Bull. 2009, 34, 178–183.Google Scholar
  18. [18]
    Kulkarni, A. J.; Zhou, M.; Ke, F. J. Orientation and size dependence of the elastic properties of zinc oxide nanobelts. Nanotechnology 2005, 16, 2749–2756.CrossRefADSGoogle Scholar
  19. [19]
    Cao, G. X.; Chen, X. Energy analysis of size-dependent elastic properties of ZnO nanofilms using atomistic simulations. Phys. Rev. B 2007, 76, 165407.CrossRefADSGoogle Scholar
  20. [20]
    Zhang, L. X.; Huang, H. C. Young’s moduli of ZnO nanoplates: Ab initio determinations. Appl. Phys. Lett. 2006, 89, 183111.CrossRefADSGoogle Scholar
  21. [21]
    Liu, X. J.; Li, J. W.; Zhou, Z. F.; Yang, L. W.; Ma, Z. S.; Xie, G. F.; Pan, Y.; Sun, C. Q. Size-induced elastic stiffening of ZnO nanostructures: Skin-depth energy pinning. Appl. Phys. Lett. 2009, 94, 131902.CrossRefADSGoogle Scholar
  22. [22]
    Miller, R. E.; Shenoy, V. B. Size-dependent elastic properties of nanosized structural elements. Nanotechnology 2000, 11, 139–147.CrossRefADSGoogle Scholar
  23. [23]
    McDowell, M. T.; Leach, A. M.; Gall, K. Bending and tensile deformation of metallic nanowires. Model. Simul. Mater. Sci. Eng. 2008, 16, 045003.CrossRefADSGoogle Scholar
  24. [24]
    He, M. R.; Shi, Y.; Zhou, W.; Chen, J. W.; Yan, Y. J.; Zhu, J. Diameter dependence of modulus in zinc oxide nanowires and the effect of loading mode: In situ experiments and universal core-shell approach. Appl. Phys. Lett. 2009, 95, 091912.CrossRefADSGoogle Scholar
  25. [25]
    Chen, C. Q.; Zhu, J. Bending strength and flexibility of ZnO nanowires. Appl. Phys. Lett. 2007, 90, 043105.CrossRefADSGoogle Scholar
  26. [26]
    Agrawal, R.; Peng, B.; Gdoutos, E.; Espinosa, H. D. Experimental-computational investigation of ZnO nanowires strength and fracture. Nano Lett. 2009, 9, 4177–4183.CrossRefPubMedADSGoogle Scholar
  27. [27]
    Soudi, A.; Khan, E. H.; Dickinson, J. T.; Gu, Y. Observation of unintentionally incorporated nitrogen-related complexes in ZnO and GaN nanowires. Nano Lett. 2009, 9, 1844–1849.CrossRefPubMedADSGoogle Scholar
  28. [28]
    Zhu, Y.; Xu, F.; Qin, Q. Q.; Fung, W. Y.; Lu, W. Mechanical properties of vapor-liquid-solid synthesized silicon nanowires. Nano Lett. 2009, 9, 3934–3939.CrossRefPubMedGoogle Scholar
  29. [29]
    Sader, J. E.; Chon, J. W. M.; Mulvaney, P. Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 1999, 70, 3967–3969.CrossRefADSGoogle Scholar
  30. [30]
    Hsin, C. L.; Mai, W. J.; Gu, Y. D.; Gao, Y. F.; Huang, C. T.; Liu, Y. Z.; Chen, L. J.; Wang, Z. L. Elastic properties and buckling of silicon nanowires. Adv. Mater. 2008, 20, 3919–3923.CrossRefGoogle Scholar
  31. [31]
    Gurtin, M. E.; Murdoch, A. I. A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 1975, 57, 291–323.MATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    Cammarata, R. C. Surface and interface stress effects in thin films. Prog. Surf. Sci. 1994, 46, 1–38.CrossRefADSGoogle Scholar
  33. [33]
    Gibbs, J. W. In The Scientific Papers of J. Willard Gibbs; Longmans-Green: London, 1906; Vol. 1, pp 55.MATHGoogle Scholar
  34. [34]
    Lu, C. S.; Danzer, R.; Fischer, F. D. Fracture statistics of brittle materials: Weibull or normal distribution. Phys. Rev. E 2002, 65, 067102.CrossRefADSGoogle Scholar
  35. [35]
    Wang, J.; Kulkarni, A. J.; Sarasamak, K.; Limpijumnong, S.; Ke, F. J.; Zhou, M. Molecular dynamics and density functional studies of a body-centered-tetragonal polymorph of ZnO. Phys. Rev. B 2007, 76, 172103.CrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Feng Xu
    • 1
  • Qingqun Qin
    • 1
  • Ashish Mishra
    • 2
  • Yi Gu
    • 2
  • Yong Zhu
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighUSA
  2. 2.Department of Physics and AstronomyWashington State UniversityPullmanUSA

Personalised recommendations