Nano Research

, Volume 3, Issue 3, pp 211–221 | Cite as

Magnetic Fe2P nanowires and Fe2P@C core@shell nanocables

  • Junli Wang
  • Qing Yang
  • Jun Zhou
  • Kewen Sun
  • Zude Zhang
  • Xiaoming Feng
  • Tanwei Li
Open Access
Research Article

Abstract

We report the synthesis of one-dimensional (1-D) magnetic Fe2P nanowires and Fe2P@C core@shell nanocables by the reactions of triphenylphosphine (PPh3) with Fe powder (particles) and ferrocene (Fe(5H5)2), respectively, in vacuum-sealed ampoules at 380–400 °C. The synthesis is based on chemical conversion of micrometer or nanometer sized Fe particles into Fe2P via the extraction of phosphorus from liquid PPh3 at elevated temperatures. In order to control product diameters, a convenient sudden-temperature-rise strategy is employed, by means of which diameter-uniform Fe2P@C nanocables are prepared from the molecular precursor Fe(C5H5)2. In contrast, this strategy gives no obvious control over the diameters of the Fe2P nanowires obtained using elemental Fe as iron precursor. The formation of 1-D Fe2P nanostructures is ascribed to the cooperative effects of the kinetically induced anisotropic growth and the intrinsically anisotropic nature of hexagonal Fe2P crystals. The resulting Fe2P nanowires and Fe2P@C nanocables display interesting ferromagnetic-paramagnetic transition behaviors with blocking temperatures of 230 and 268 K, respectively, significantly higher than the ferromagnetic transition temperature of bulk Fe2P (TC = 217 K).

Keywords

Metal phosphide nanowires core@shell nanocables magnetic nanostructures chemical synthesis 

Supplementary material

12274_2010_1024_MOESM1_ESM.pdf (202 kb)
Supplementary material, approximately 202 KB.

References

  1. [1]
    Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, H. Q. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389.CrossRefGoogle Scholar
  2. [2]
    Law, M.; Goldberger, J.; Yang, P. D. Semiconductor nanowires and nanotubes. Ann. Rev. Mater. Res. 2004, 34, 83–122.CrossRefADSGoogle Scholar
  3. [3]
    Li, Y.; Qian, F.; Xiang, J.; Lieber, C. M. Nanowire electronic and optoelectronic devices. Mater. Today 2006, 9, 18–27.CrossRefGoogle Scholar
  4. [4]
    Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Xu, C.; Wang, X. D.; Wang, Z. L. Nanowire structured hybrid cell for concurrently scavenging solar and mechanical energies. J. Am. Chem. Soc. 2009, 131, 5866–5872.CrossRefPubMedGoogle Scholar
  6. [6]
    Aronsson, B.; Lundstrom, T.; Rundquist, S. Borides, Silicides, and Phosphides: A Critical Review of Their Preparation, Properties, and Crystal Chemistry; Ballantyne and Co.: Spottiswoode, U.K., 1965.Google Scholar
  7. [7]
    Oyama, S. T. Novel catalysts for advanced hydroprocessing: Transition metal phosphides. J. Catal. 2003, 216, 343–352.CrossRefGoogle Scholar
  8. [8]
    Gschneidner Jr. K. A.; Pecharsky, V. K.; Tsokol, A. O. Recent developments in magnetocaloric materials. Rep. Prog. Phys. 2005, 68, 1479–1539.CrossRefADSGoogle Scholar
  9. [9]
    Gillot, F.; Boyanov, S.; Dupont, L.; Doublet, M. L.; Morcrette, M.; Monconduit, L.; Tarascon, J. M. Electrochemical reactivity and design of NiP2 negative electrodes for secondary Li-ion batteries. Chem. Mater. 2005, 17, 6327–6337.CrossRefGoogle Scholar
  10. [10]
    Boyanov, S.; Bernardi, J.; Gillot, F.; Dupont, L.; Womes, M.; Tarascon, J. M.; Monconduit, L.; Doublet, M. L. FeP: Another attractive anode for the Li-ion battery enlisting a reversible two-step insertion/conversion process. Chem. Mater. 2006, 18, 3531–3538.CrossRefGoogle Scholar
  11. [11]
    Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 2009, 48, 60–103.CrossRefGoogle Scholar
  12. [12]
    Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000, 287, 1989–1992.CrossRefPubMedADSGoogle Scholar
  13. [13]
    Comini, E.; Baratto, C.; Faglia, G.; Ferroni, M.; Vomiero, A.; Sberveglieri, G. Quasi-one-dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors. Prog. Mater. Sci. 2009, 54, 1–67.CrossRefGoogle Scholar
  14. [14]
    Jun, Y.; Choi, J.; Cheon, J. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew. Chem. Int. Ed. 2006, 45, 3414–3439.CrossRefGoogle Scholar
  15. [15]
    Peng, X. G.; Wickham, J.; Alivisatos, A. P. Kinetics of II- VI and III-V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions. J. Am. Chem. Soc. 1998, 120, 5343–5344.CrossRefGoogle Scholar
  16. [16]
    Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.CrossRefPubMedADSGoogle Scholar
  17. [17]
    Homma, Y.; Liu, H. P.; Takagi, D.; Kobayashi, Y. Single-walled carbon nanotube growth with non-iron-group “catalysts” by chemical vapor deposition. Nano Res. 2009, 2, 793–799.CrossRefGoogle Scholar
  18. [18]
    Kodambaka, S.; Tersoff, J.; Reuter, M. C.; Ross, F. M. Germanium nanowire growth below the eutectic temperature. Science 2007, 316, 729–732.CrossRefPubMedADSGoogle Scholar
  19. [19]
    Wang, F.; Buhro, W. E. Determination of the rod.wire transition length in colloidal indium phosphide quantum rods. J. Am. Chem. Soc. 2007, 129, 14381–14387.CrossRefPubMedGoogle Scholar
  20. [20]
    Fanfair, D. D.; Korgel, B. A. Bismuth nanocrystal-seeded III-V semiconductor nanowire synthesis. Cryst. Growth Des. 2005, 5, 1971–1976.CrossRefGoogle Scholar
  21. [21]
    Brock, S. L.; Perera, S. C.; Stamm, K. L. Chemical routes for production of transition metal phosphides on the nanoscale: Implications for advanced magnetic and catalytic materials. Chem. Eur. J. 2004, 10, 3364–3371.CrossRefGoogle Scholar
  22. [22]
    Park, J.; Koo, B.; Yoon, K. Y.; Hwang, Y.; Kang, M.; Park, J. G.; Hyeon, T. Generalized synthesis of metal phosphide nanorods via thermal decomposition of continuously delivered metal-phosphine complexes using a syringe pump. J. Am. Chem. Soc. 2005, 127, 8433–8440.CrossRefPubMedGoogle Scholar
  23. [23]
    Park, J.; Koo, B.; Hwang, Y.; Bae, C.; An, K.; Park, J. G.; Park, H. M.; Hyeon, T. Novel synthesis of magnetic Fe2P nanorods from thermal decomposition of continuously delivered precursors using a syringe pump. Angew. Chem., Int. Ed. 2004, 43, 2282–2285.CrossRefGoogle Scholar
  24. [24]
    Chen, J. H.; Taib, M. F.; Chi, K. M. Catalytic synthesis, characterization and magnetic properties of iron phosphide nanowires. J. Mater. Chem. 2004, 14, 296–298.CrossRefGoogle Scholar
  25. [25]
    Qian, C.; Kim, F.; Ma, L.; Tsui, F.; Yang, P. D.; Liu, J. Solution-phase synthesis of single-crystalline iron phosphide nanorods/nanowires. J. Am. Chem. Soc. 2004, 126, 1195–1198.CrossRefPubMedGoogle Scholar
  26. [26]
    Gregg, K. A.; Perera, S. C.; Lawes, G.; Shinozaki, S.; Brock, S. L. Controlled synthesis of MnP nanorods: Effect of shape anisotropy on magnetization. Chem. Mater. 2006, 18, 879–886.CrossRefGoogle Scholar
  27. [27]
    Li, Y.; Malik, M. A.; O’Brien, P. Synthesis of single-crystalline CoP nanowires by a one-pot metal-organic route. J. Am. Chem. Soc. 2005, 127, 16020–16021.CrossRefPubMedGoogle Scholar
  28. [28]
    Kelly, A. T.; Rusakova, I.; Ould-Ely, T.; Hofmann, C.; Lüttge, A.; Whitmire, K. H. Iron phosphide nanostructures produced from a single-source organometallic precursor: Nanorods, bundles, crosses, and spherulites. Nano Lett. 2007, 7, 2920–2925.CrossRefPubMedADSGoogle Scholar
  29. [29]
    Lukehart, C. M.; Milne, S. B.; Stock, S. R. Formation of crystalline nanoclusters of Fe2P, RuP, Co2P, Rh2P, Ni2P, Pd5P2, or PtP2 in a silica xerogel matrix from single-source molecular precursors. Chem. Mater. 1998, 10, 903–908.CrossRefGoogle Scholar
  30. [30]
    Xie, Y.; Su, H. L.; Qian, X. F.; Liu, X. M.; Qian, Y. T. A mild one-step solvothermal route to metal phosphides (metal = Co, Ni, Cu). J. Solid State Chem. 2000, 149, 88–91.CrossRefADSGoogle Scholar
  31. [31]
    Luo, F.; Su, H. L.; Song, W.; Wang, Z. M.; Yan, Z. G.; Yan, C. H. Magnetic and magnetotransport properties of Fe2P nanocrystallites via a solvothermal route. J. Mater. Chem. 2004, 14, 111–115.CrossRefGoogle Scholar
  32. [32]
    Perera, S. C.; Tsoi, G.; Wenger, L. E.; Brock, S. L. Synthesis of MnP nanocrystals by treatment of metal carbonyl complexes with phosphines: A new, versatile route to nanoscale transition metal phosphides. J. Am. Chem. Soc. 2003, 125, 13960–13961.CrossRefPubMedGoogle Scholar
  33. [33]
    Stamm, K. L.; Garno, J. C.; Liu, G. Y.; Brock, S. L. A general methodology for the synthesis of transition metal pnictide nanoparticles from pnictate precursors and its application to iron-phosphorus phases. J. Am. Chem. Soc. 2003, 125, 4038–4039.CrossRefPubMedGoogle Scholar
  34. [34]
    Chiang, R. K.; Chiang, R. T. Formation of hollow Ni2P nanoparticles based on the nanoscale Kirkendall effect. Inorg. Chem. 2007, 46, 369–371.CrossRefPubMedGoogle Scholar
  35. [35]
    Henkes, A. E.; Vasquez, Y.; Schaak, R. E. Converting metals into phosphides: A general strategy for the synthesis of metal phosphide nanocrystals. J. Am. Chem. Soc. 2007, 129, 1896–1897.CrossRefPubMedGoogle Scholar
  36. [36]
    Vasquez, Y.; Henkes, A. E.; Bauer, J. C.; Schaak, R. E. Nanocrystal conversion chemistry: A unified and materialsgeneral strategy for the template-based synthesis of nanocrystalline solids. J. Solid State Chem. 2008, 181, 1509–1523.CrossRefADSGoogle Scholar
  37. [37]
    Wang, J. L.; Yang, Q.; Zhang, Z. D.; Sun, S. Phase-controlled synthesis of transition metal phosphide nanowires via new Ullmann-type reactions. Chem. Eur. J. 2010, accepted.Google Scholar
  38. [38]
    Wang, J. L.; Yang, Q.; Zhang, Z. D. Selective synthesis of magnetic Fe2P/C and FeP/C core/shell nanocables. J. Phys. Chem. Lett. 2010, 1, 102–106.CrossRefGoogle Scholar
  39. [39]
    Kumar, S.; Nann, T. Shape control of II-VI semiconductor nanomaterials. Small 2006, 2, 316–329.CrossRefPubMedGoogle Scholar
  40. [40]
    Robb, D. T.; Privman, V. Model of nanocrystal formation in solution by burst nucleation and diffusional growth. Langmuir 2008, 24, 26–35.CrossRefPubMedGoogle Scholar
  41. [41]
    Predel, B. Fe-P (Iron-Phosphorus). Madelung, O., Ed.; Springermaterials—The Landolt-Börnstein Database. http://www.springermaterials.com, DOI: 10.1007/10474837_1325.
  42. [42]
    Fujii, H.; Uwatoko, Y.; Motoya, K.; Ito, Y.; Okamoto, T. Neutron scattering investigation of itinerant electron system Fe2P. J. Phys. Soc. Jpn. 1988, 57, 2143–2153.CrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Junli Wang
    • 1
    • 2
  • Qing Yang
    • 1
    • 2
  • Jun Zhou
    • 1
  • Kewen Sun
    • 2
  • Zude Zhang
    • 2
  • Xiaoming Feng
    • 1
  • Tanwei Li
    • 1
  1. 1.Hefei National Laboratory for Physical Science at MicroscaleUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Department of ChemistryUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations