Skip to main content

Advertisement

SpringerLink
New insights into the growth mechanism and surface structure of palladium nanocrystals
Download PDF
Download PDF
  • Research Article
  • Open Access
  • Published: 05 May 2010

New insights into the growth mechanism and surface structure of palladium nanocrystals

  • Byungkwon Lim1,
  • Hirokazu Kobayashi1,
  • Pedro H. C. Camargo1,
  • Lawrence F. Allard2,
  • Jingyue Liu3 &
  • …
  • Younan Xia1 

Nano Research volume 3, pages 180–188 (2010)Cite this article

  • 2537 Accesses

  • 90 Citations

  • 1 Altmetric

  • Metrics details

Abstract

This paper presents a systematic study of the growth mechanism for Pd nanobars synthesized by reducing Na2PdCl4 with L-ascorbic acid in an aqueous solution in the presence of bromide ions as a capping agent. Transmission electron microscopy (TEM) and high-resolution TEM analyses revealed that the growth at early stages of the synthesis was dominated by particle coalescence, followed by shape focusing via recrystallization and further growth via atomic addition. We also investigated the detailed surface structure of the nanobars using aberration-corrected scanning TEM and found that the exposed {100} surfaces contained several types of defects such as an adatom island, a vacancy pit, and atomic steps. Upon thermal annealing, the nanobars evolved into a more thermodynamically favored shape with enhanced truncation at the corners.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Skrabalak, S. E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C. M.; Xia, Y. Gold nanocages: Synthesis, properties, and applications. Acc. Chem. Res. 2008, 41, 1587–1595.

    Article  CAS  PubMed  Google Scholar 

  2. Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 2009, 48, 60–103.

    Article  CAS  Google Scholar 

  3. Peng, Z.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 2009, 4, 143–164.

    Article  CAS  MathSciNet  Google Scholar 

  4. Tian, N.; Zhou, Z. -Y.; Sun, S. -G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Bratlie, K. M.; Lee, H.; Komvopoulos, K.; Yang, P.; Somorjai, G. A. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett. 2007, 7, 3097–3101.

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Lim, B.; Lu, X.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Lee, E. P.; Xia, Y. Facile synthesis of highly faceted multioctahedral Pt nanocrystals through controlled overgrowth. Nano Lett. 2008, 8, 4043–4047.

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Wang, C.; Daimon, H.; Onodera, T.; Koda, T.; Sun, S. A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angew. Chem. Int. Ed. 2008, 47, 3588–3591.

    Article  CAS  Google Scholar 

  8. Lim, B.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X.; Zhu, Y.; Xia, Y. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6, 692–697.

    Article  CAS  PubMed  ADS  Google Scholar 

  10. LaMer, V. K.; Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854.

    Article  CAS  Google Scholar 

  11. Peng, X.; Wickham, J.; Alivisatos, A. P. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions. J. Am. Chem. Soc. 1998, 120, 5343–5344.

    Article  CAS  Google Scholar 

  12. Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T. Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 2007, 46, 4630–4660.

    Article  CAS  Google Scholar 

  13. Anwar, J.; Boateng, P. K. Computer simulation of crystallization from solution. J. Am. Chem. Soc. 1998, 120, 9600–9604.

    Article  CAS  Google Scholar 

  14. Niederberger, M.; Colfen, H. Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys. 2006, 8, 3271–3287.

    Article  CAS  PubMed  Google Scholar 

  15. Watzky, M. A.; Finney, E. E.; Finke, R. G. Transition-metal nanocluster size vs. formation time and the catalytically effective nucleus number: A mechanism-based treatment. J. Am. Chem. Soc. 2008, 130, 11959–11969.

    Article  CAS  PubMed  Google Scholar 

  16. Lim, B.; Wang, J.; Camargo, P. H. C.; Cobley, C. M.; Kim, M. J.; Xia, Y. Twin-induced growth of palladium-platinum alloy nanocrystals. Angew. Chem. Int. Ed. 2009, 48, 6304–6308.

    Article  CAS  Google Scholar 

  17. Bisson, L.; Boissiere, C.; Nicole, L.; Grosso, D.; Jolivet, J. P.; Thomazeau, C.; Uzio, D.; Berhault, G.; Sanchez, C. Formation of palladium nanostructures in a seed-mediated synthesis through an oriented-attachment-directed aggregation. Chem. Mater. 2009, 21, 2668–2678.

    Article  CAS  Google Scholar 

  18. Banfield, J. F.; Welch, S. A.; Zhang, H.; Ebert, T. T.; Penn, R. L. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 2000, 289, 751–754.

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Pacholski, C.; Kornowski, A.; Weller, H. Self-assembly of ZnO: From nanodots to nanorods. Angew. Chem. Int. Ed. 2002, 41, 1188–1191.

    Article  CAS  Google Scholar 

  20. Tang, Z.; Kotov, N. A.; Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 2002, 297, 237–240.

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Zhang, Z.; Tang, Z.; Kotov, N. A.; Glotzer, S. C. Simulations and analysis of self-assembly of CdTe nanoparticles into wires and sheets. Nano Lett. 2007, 7, 1670–1675.

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Yu, J. H.; Joo, J.; Park, H. M.; Baik, S. -I.; Kim, Y. W.; Kim, S. C.; Hyeon, T. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. J. Am. Chem. Soc. 2005, 127, 5662–5670.

    Article  CAS  PubMed  Google Scholar 

  23. Halder, A.; Ravishankar, N. Ultrafine single-crystalline gold nanowire arrays by oriented attachment. Adv. Mater. 2007, 19, 1854–1858.

    Article  CAS  Google Scholar 

  24. Zheng, H.; Smith, R. K.; Jun, Y. -W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Observation of single colloidal platinum nanocrystal growth trajectories. Science 2009, 324, 1309–1312.

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Lim, B.; Jiang, M.; Tao, J.; Camargo, P. H. C.; Zhu, Y.; Xia, Y. Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Adv. Funct. Mater. 2009, 19, 189–200.

    Article  CAS  Google Scholar 

  26. Xiong, Y.; Cai, H.; Wiley, B. J.; Wang, J.; Kim, M. J.; Xia, Y. Synthesis and mechanistic study of palladium nanobars and nanorods. J. Am. Chem. Soc. 2007, 129, 3665–3675.

    Article  CAS  PubMed  Google Scholar 

  27. Niu, W.; Li, Z. -Y.; Shi, L.; Liu, X.; Li, H.; Han, S.; Chen, J.; Xu, G. Seed-mediated growth of nearly monodisperse palladium nanocubes with controllable sizes. Cryst. Growth Des. 2008, 8, 4440–4444.

    Article  CAS  Google Scholar 

  28. Zhang, Z.; Lagally, M. G. Atomistic processes in the early stages of thin-film growth. Science 1997, 276, 377–383.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Biomedical Engineering, Washington University, St. Louis, Missouri, 63130, USA

    Byungkwon Lim, Hirokazu Kobayashi, Pedro H. C. Camargo & Younan Xia

  2. Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA

    Lawrence F. Allard

  3. Center for Nanoscience and Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, 63121, USA

    Jingyue Liu

Authors
  1. Byungkwon Lim
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Hirokazu Kobayashi
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Pedro H. C. Camargo
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Lawrence F. Allard
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Jingyue Liu
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Younan Xia
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Jingyue Liu or Younan Xia.

Additional information

This article is published with open access at Springerlink.com

These two authors contributed equally to this work.

Electronic supplementary material

Supplementary material, approximately 191 KB.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Lim, B., Kobayashi, H., Camargo, P.H.C. et al. New insights into the growth mechanism and surface structure of palladium nanocrystals. Nano Res. 3, 180–188 (2010). https://doi.org/10.1007/s12274-010-1021-5

Download citation

  • Received: 24 November 2009

  • Revised: 26 December 2009

  • Accepted: 20 January 2010

  • Published: 05 May 2010

  • Issue Date: March 2010

  • DOI: https://doi.org/10.1007/s12274-010-1021-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Palladium
  • nanocrystals
  • growth
  • coalescence
  • surface evolution
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.