Nano Research

, Volume 3, Issue 3, pp 174–179 | Cite as

Shape-controlled CuCl crystallite catalysts for aniline coupling

  • Ting Xie
  • Ming Gong
  • Zhiqiang Niu
  • Shuai Li
  • Xiaoyu Yan
  • Yadong Li
Open Access
Research Article

Abstract

The catalytic activity of crystallites depends mainly upon the arrangement of surface atoms, the number of dangling bonds, and defect site distribution on different crystal planes. Here, we report the shape-controlled synthesis of CuCl crystallites, including tetrahedra, face-centered-etched tetrahedra, tripod dendrites, and tetrapods. These different morphologies of CuCl crystallites expose different proportions of {111} and {110} crystal planes, and materials with a preponderance of {111} crystal planes have better catalytic activity in aniline coupling than those with more {110} planes.

Keywords

CuCl aniline coupling catalytic activity crystal plane effects 

Supplementary material

12274_2010_1020_MOESM1_ESM.pdf (584 kb)
Supplementary material, approximately 584 KB.

References

  1. [1]
    Burda, C.; Chen, X.; Narayanan, R.; El-Sayed M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025–1102.CrossRefPubMedGoogle Scholar
  2. [2]
    Zhou, K. B.; Wang, X.; Sun, X. M.; Peng Q.; Li, Y. D. Enhanced catalytic activity of ceria nanorods from welldefined reactive crystal planes. J. Catal. 2005, 229, 206–212.CrossRefGoogle Scholar
  3. [3]
    Zhou, K. B.; Xu, R.; Sun, X. M.; Chen, H. D.; Tian, Q.; Shen, D. X.; Li, Y. D. Favorable synergetic effects between CuO and the reactive planes of ceria nanorods. Catal. Lett. 2005, 101, 169–173.CrossRefGoogle Scholar
  4. [4]
    Zhou, K. B.; Wang, R. P.; Xu, B. Q.; Li, Y. D. Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes. Nanotechnology 2006, 17, 3939–3943.CrossRefADSGoogle Scholar
  5. [5]
    Zhang, Y. W.; Grass, M. E.; Habas, S. E.; Tao, F.; Zhang, T. F.; Yang, P. D.; Somorjai, G. A. One-step polyol synthesis and Langmuir-Blodgett monolayer formation of size-tunable monodisperse rhodium nanocrystals with catalytically active (111) surface structures. J. Am. Chem. Soc. 2007, 111, 12243–12253.Google Scholar
  6. [6]
    Bratlie, K. M.; Lee, H.; Komvopoulos, K.; Yang, P. D.; Somorjai, G. A. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett. 2007, 7, 3097–3101.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with highindex facets and high electro-oxidation activity. Science 2007, 316, 732–735.CrossRefPubMedADSGoogle Scholar
  8. [8]
    Si, R.; Flytzani-Stephanopoulos, M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. Angew. Chem. Int. Ed. 2008, 47, 2884–2887.CrossRefGoogle Scholar
  9. [9]
    Hu, L. H.; Peng, Q.; Li, Y. D. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc. 2008, 130, 16136–16137.CrossRefPubMedGoogle Scholar
  10. [10]
    Liu, X. W.; Zhou, K. B.; Wang, L.; Wang, B. Y.; Li, Y. D. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J. Am. Chem. Soc. 2009, 131, 3140–3141.CrossRefGoogle Scholar
  11. [11]
    Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solutionbased synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30–46.CrossRefGoogle Scholar
  12. [12]
    Xie, X. W.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen, W. J. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 2009, 458, 746–749.CrossRefPubMedADSGoogle Scholar
  13. [13]
    Rousselet, G.; Capdevienlle, P.; Maumy, M. Copper(I)-induced addition of amines to unactivated nitriles: The first general one-step synthesis of alkyl amidines. Tetrahedron Lett. 1993, 34, 6395–6398.CrossRefGoogle Scholar
  14. [14]
    Cao, Y.; Hu, J. C.; Yang, P.; Dai, W. L.; Fan, K. N. CuCl catalyst heterogenized on diamide immobilized SBA-15 for efficient oxidative carbonylation of methanol to dimethylcarbonate. Chem. Commun. 2003, 908–909.Google Scholar
  15. [15]
    He, C.; Chen, C.; Chen, J.; Liu, C.; Liu, W.; Liu, Q.; Lei, A. W. Aryl halide tolerated electrophilic amination of arylboronic acids with N-chloroamides catalyzed by CuCl at room temperature. Angew. Chem. Int. Ed. 2008, 47, 6414–6417.CrossRefGoogle Scholar
  16. [16]
    Li, Q.; Shao, M. W.; Yu, G. H.; Wu, J.; Li, F. Q.; Qian, Y. T. A solvent-reduction approach to tetrapod-like copper(I) chloride crystallites. J. Mater. Chem. 2003, 13, 424–427.CrossRefGoogle Scholar
  17. [17]
    Xie, T.; Li, S. A.; Peng, Q.; Li, Y. D. Monodisperse BaF2 nanocrystals: Phases, size transitions, and self-assembly. Angew. Chem. Int. Ed. 2009, 48, 196–200.CrossRefGoogle Scholar
  18. [18]
    Xie, T.; Li, S. A.; Wang, W. B.; Peng, Q.; Li, Y. D. Nucleation and growth of BaF(x)Cl(2-x) nanorods. Chem. Eur. J. 2008, 14, 9730–9735.CrossRefGoogle Scholar
  19. [19]
    Li, S. A.; Xie, T.; Peng, Q.; Li, Y. D. Nucleation and growth of CeF3 and NaCeF4 nanocrystals. Chem. Eur. J. 2009, 15, 2512–2517.CrossRefGoogle Scholar
  20. [20]
    Lu, W. C.; Xi, C. J. CuCl-catalyzed aerobic oxidative reaction of primary aromatic amines. Tetrahedron Lett. 2008, 49, 4011–4015.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ting Xie
    • 1
  • Ming Gong
    • 1
  • Zhiqiang Niu
    • 1
  • Shuai Li
    • 1
  • Xiaoyu Yan
    • 1
  • Yadong Li
    • 1
  1. 1.Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations