Advertisement

Nano Research

, Volume 3, Issue 2, pp 117–125 | Cite as

Soluble graphene through edge-selective functionalization

  • Zhengzong Sun
  • Shin-ichiro Kohama
  • Zengxing Zhang
  • Jay R. Lomeda
  • James M. Tour
Open Access
Research Article

Abstract

Thermally expanded graphite was functionalized with 4-bromophenyl addends using the in situ diazonium formation procedure, and after mild sonication treatment in N,N′-dimethylformamide, thin graphene layers were exfoliated from the bulk graphite. These chemically-assisted exfoliated graphene (CEG) sheets had higher solubility than pristine graphene without any stabilizer additive. More than 70% of these soluble flakes had less than 5 layers. Energy filtered transmission electron microscopy (EFTEM) elemental mapping provided evidence of the edge-selective diazonium functionalization with graphene. A majority of the Br signals came from the edges of the CEG indicating that the basal planes were not highly functionalized. The CEG was also characterized by X-ray photoelectron spectroscopy, atomic force microscopy, Raman spectroscopy, and transmission electron microscopy.

Keywords

Edge-selective functionalization graphene energy filtered transmission electron microscopy (EFTEM) chemically-assisted exfoliation 

Supplementary material

12274_2010_1016_MOESM1_ESM.pdf (818 kb)
Supplementary material, approximately 340 KB.

References

  1. [1]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Ruoff, R. Graphene: Calling all chemists. Nat. Nanotechnol. 2008, 3, 10–11.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphene oxide. Carbon 2007, 45, 1558–1565.CrossRefGoogle Scholar
  4. [4]
    Wang, H. L.; Robinson, J. T.; Li, X. L.; Dai, H. J. Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc. 2009, 131, 9910–9911.CrossRefPubMedGoogle Scholar
  5. [5]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Hamilton, C. E.; Lomeda, J. R.; Sun, Z. Z.; Tour, J. M.; Barron, A. R. High-yield organic dispersions of unfunctionalized graphene. Nano Lett. 2009, 9, 3460–3462.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.CrossRefPubMedGoogle Scholar
  8. [8]
    Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z.; McGovern, I. T.; Duesberg, G. S.; Coleman, J. N. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 2009, 131, 3611–3620.CrossRefPubMedGoogle Scholar
  9. [9]
    Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.CrossRefPubMedADSGoogle Scholar
  10. [10]
    Jia, X. T.; Hofmann, M.; Meunier, V.; Sumpter, B. G.; Campos-Delgado, J.; Romo-Herrera, J. M.; Son, H. B.; Hsieh, Y. P.; Reina, A.; Kong, J.; Terrones, M.; Dresselhaus, M. S. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 2009, 323, 1701–1705.CrossRefPubMedADSGoogle Scholar
  11. [11]
    Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.CrossRefPubMedADSGoogle Scholar
  12. [12]
    Robinson, J. A.; Puls, C. P.; Staley, N. E.; Stitt, J. P.; Fanton, M. A.; Emtsev, K. V.; Seyller, T.; Liu, Y. Raman topography and strain uniformity of large-area epitaxial graphene. Nano Lett. 2009, 9, 964–968.CrossRefPubMedADSGoogle Scholar
  13. [13]
    Ni, Z. H.; Chen, W.; Fan, X. F.; Kuo, J. L.; Yu, T.; Wee, A. T. S.; Shen, Z. X. Raman spectroscopy of epitaxial graphene on a SiC substrate. Phys. Rev. B. 2008, 77, 115416.CrossRefADSGoogle Scholar
  14. [14]
    Rohrl, J.; Hundhausen, M.; Emtsev, K. V.; Seyller, T.; Graupner, R.; Ley, L. Raman spectra of epitaxial graphene on SiC(0001). Appl. Phys. Lett. 2008, 92, 201918.CrossRefADSGoogle Scholar
  15. [15]
    Lomeda, J. R.; Doyle, C. D.; Kosynkin, D. V.; Hwang, W. F.; Tour, J. M. Diazonium functionalization of surfactantwrapped chemically converted graphene sheets. J. Am. Chem. Soc. 2008, 130, 16201–16206.CrossRefPubMedGoogle Scholar
  16. [16]
    Teweldebrhan, D.; Balandin, A. A. Modification of graphene properties due to electron-beam irradiation. Appl. Phys. Lett. 2009, 94, 013101.CrossRefADSGoogle Scholar
  17. [17]
    Mkhoyan, K. A.; Contryman, A. W.; Silcox, J.; Stewart, D. A.; Eda, G.; Mattevi, C.; Miller, S.; Chhowalla, M. Atomic and electronic structure of graphene-oxide. Nano Lett. 2009, 9, 1058–1063.CrossRefADSGoogle Scholar
  18. [18]
    Girit, C. O.; Meyer, J. C.; Erni, R.; Rossell, M. D.; Kisielowski, C.; Yang, L.; Park, C. H.; Crommie, M. F.; Cohen, M. L.; Louie, S. G.; Zettl, A. Graphene at the edge: Stability and dynamics. Science 2009, 323, 1705–1708.CrossRefPubMedADSGoogle Scholar
  19. [19]
    Liu, Z.; Suenaga, K.; Harris, P. J. F.; Iijima, S. Open and closed edges of graphene layers. Phys. Rev. Lett. 2009, 102, 015501.CrossRefPubMedADSGoogle Scholar
  20. [20]
    Barnard, A. S.; Snook, I. K. Thermal stability of graphene edge structure and graphene nanoflakes. J. Chem. Phys. 2008, 128, 094707.CrossRefPubMedADSGoogle Scholar
  21. [21]
    Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L. G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1291.CrossRefPubMedGoogle Scholar
  22. [22]
    Gupta, A. K.; Russin, T. J.; Gutierrez, H. R.; Eklund, P. C. Probing graphene edges via Raman scattering. ACS Nano 2009, 3, 45–52.CrossRefPubMedGoogle Scholar
  23. [23]
    Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E.; Dai, H. J. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 2008, 3, 538–542.CrossRefPubMedGoogle Scholar
  24. [24]
    Hernandez, Y.; Lotya, M.; Rickard, D.; Bergin, S. D.; Coleman, J. N. Measurement of multicomponent solubility parameters for graphene facilities solvent discovery. Langmuir, in press, DOI: 10.1021/la903188a.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Zhengzong Sun
    • 1
  • Shin-ichiro Kohama
    • 1
  • Zengxing Zhang
    • 1
  • Jay R. Lomeda
    • 1
  • James M. Tour
    • 1
  1. 1.Department of Chemistry and Mechanical Engineering and Materials Science and the Smalley Institute for Nanoscale Science and TechnologyRice UniversityHoustonUSA

Personalised recommendations