Nano Research

, Volume 3, Issue 2, pp 110–116 | Cite as

Crystallographically selective nanopatterning of graphene on SiO2

  • Péter Nemes-Incze
  • Gábor Magda
  • Katalin Kamarás
  • László Péter Biró
Open Access
Research Article

Abstract

Graphene has many advantageous properties, but its lack of an electronic band gap makes this two-dimensional material impractical for many nanoelectronic applications, for example, field-effect transistors. This problem can be circumvented by opening up a confinement-induced gap, through the patterning of graphene into ribbons having widths of a few nanometres. The electronic properties of such ribbons depend on both their size and the crystallographic orientation of the ribbon edges. Therefore, etching processes that are able to differentiate between the zigzag and armchair type edge terminations of graphene are highly sought after. In this contribution we show that such an anisotropic, dry etching reaction is possible and we use it to obtain graphene ribbons with zigzag edges. We demonstrate that the starting positions for the carbon removal reaction can be tailored at will with precision.

Keywords

Graphene atomic force microscopy (AFM) etching nanoribbon zigzag 

Supplementary material

12274_2010_1015_MOESM1_ESM.pdf (899 kb)
Supplementary material, approximately 340 KB.

References

  1. [1]
    Han, M. Y.; Özyilmaz, B.; Zhang, Y. B.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Son, Y. W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Akola, J.; Heiskanen, H. P.; Manninen, M. Edge-dependent selection rules in magic triangular graphene flakes. Phys. Rev. B. 2008, 77, 193410.CrossRefADSGoogle Scholar
  4. [4]
    Yamashiro, A.; Shimoi, Y.; Harigaya, K.; Wakabayashi, K. Spin- and charge-polarized states in nanographene ribbons with zigzag edges. Phys. Rev. B. 2003, 68, 193410.CrossRefADSGoogle Scholar
  5. [5]
    Cervantes-Sodi, F.; Csányi, G.; Piscanec, S.; Ferrari, A. C. Edge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties. Phys. Rev. B. 2008, 77, 165427.CrossRefADSGoogle Scholar
  6. [6]
    Kim, W. Y.; Kim, K. S. Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Nat. Nanotechnol. 2008, 3, 408–412.CrossRefPubMedGoogle Scholar
  7. [7]
    Tapasztó, L.; Dobrik, G.; Lambin, P.; Biró, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 2008, 3, 397–401.CrossRefPubMedGoogle Scholar
  8. [8]
    Sharma, R.; Nair, N.; Strano, M. S. Structure reactivity relationships for graphene nanoribbons. J. Phys. Chem. C. 2009, 113, 14771–14777.CrossRefGoogle Scholar
  9. [9]
    Jiang, D. S.; Sumpter, B. G.; Dai, S. Unique chemical reactivity of a graphene nanoribbon’s zigzag edge. J. Chem. Phys. 2007, 126, 134701.CrossRefPubMedADSGoogle Scholar
  10. [10]
    Koskinen, P.; Malola, S.; Häkkinen, H. Self-passivating edge reconstructions of graphene. Phys. Rev. Lett. 2008, 101, 115502.CrossRefPubMedADSGoogle Scholar
  11. [11]
    Konishi, S.; Sugimoto, W.; Murakami, Y.; Takasu, Y. Catalytic creation of channels in the surface layers of highly oriented pyrolytic graphite by cobalt nanoparticles. Carbon 2006, 44, 2338–2340.CrossRefGoogle Scholar
  12. [12]
    Campos, L. C.; Manfrinato, V. R.; Sanchez-Yamagishi, J. D.; Kong, J.; Jarillo-Herrero, P. Anisotropic etching and nanoribbon formation in single-layer graphene. Nano Lett. 2009, 9, 2600–2604.CrossRefPubMedADSGoogle Scholar
  13. [13]
    Ci, L. J.; Xu, Z. P.; Wang, L. L.; Gao, W.; Ding, F.; Kelly, K. F.; Yakobson, B. I.; Ajayan, P. M. Controlled nanocutting of graphene. Nano Res. 2008, 1, 116–122.CrossRefGoogle Scholar
  14. [14]
    Novoselov, K.; Geim, A. K.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science. 2004, 306, 666–669.CrossRefPubMedADSGoogle Scholar
  15. [15]
    Blake, P.; Hill, E. W.; Castro Neto, A. H.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K. Making graphene visible. Appl. Phys. Lett. 2007, 91, 063124.CrossRefADSGoogle Scholar
  16. [16]
    Liu, L.; Ryu, S. M.; Tomasik, M. R.; Stolyarova, E.; Jung, N.; Hybertsen, M. S.; Steigerwald, M. L.; Brus, L. E.; Flynn, G. W. Graphene oxidation: Thickness-dependent etching and strong chemical doping. Nano Lett. 2008, 8, 1965–1970.CrossRefPubMedADSGoogle Scholar
  17. [17]
    Tandon, D.; Hippo, E. J.; Marsh, H.; Sebok, E. Surface topography of oxidized HOPG by scanning tunneling microscopy. Carbon 1997, 35, 35–44.CrossRefGoogle Scholar
  18. [18]
    Koc, R.; Cattamanchi, S. V. Synthesis of beta silicon carbide powders using carbon coated fumed silica. J. Mater. Sci. 1998, 33, 2537–2549.CrossRefADSGoogle Scholar
  19. [19]
    Byon, H. R.; Choi, H. C. Carbon nanotube guided formation of silicon oxide nanotrenches. Nat. Nanotechnol. 2007, 2, 162–166.CrossRefPubMedADSGoogle Scholar
  20. [20]
    Girit, C. Ö.; Zettl, A. Soldering to a single atomic layer. Appl. Phys. Lett. 2007, 91, 193512.CrossRefADSGoogle Scholar
  21. [21]
    Cresti, A.; Roche, S. Range and correlation effects in edge disordered graphene nanoribbons. New J. Phys. 2009, 11, 095004.CrossRefADSGoogle Scholar
  22. [22]
    Wang, X. R.; Li, X. L.; Zhang, L.; Yoon, Y.; Weber, P. K.; Wang, H. L.; Guo, J.; Dai, H. J. N-doping of graphene through electrothermal reactions with ammonia. Science 2009, 324, 768–771.CrossRefPubMedADSGoogle Scholar
  23. [23]
    Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; Sood, A. K. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.CrossRefPubMedGoogle Scholar
  24. [24]
    Tan, Y. W.; Zhang, Y.; Bolotin, K.; Zhao, Y.; Adam, S.; Hwang, E. H.; Das Sarma, S.; Stormer, H. L.; Kim, P. Measurement of scattering rate and minimum conductivity in graphene. Phys. Rev. Lett. 2007, 99, 246803.CrossRefPubMedADSGoogle Scholar
  25. [25]
    Chen, C. C.; Bao, W. Z.; Theiss, J.; Dames, C.; Lau, C. N.; Cronin, S. B. Raman spectroscopy of ripple formation in suspended graphene. Nano Lett. 2009, 9, 4172–4176.CrossRefPubMedADSGoogle Scholar
  26. [26]
    Tsoukleri, G.; Parthenios, J.; Papagelis, K.; Jalil, R.; Ferrari, A. C.; Geim, A. K.; Novoselov, K. S; Galiotis, C. Subjecting a graphene monolayer to tension and compression. Small 2009, 5, 2397–2402.CrossRefPubMedGoogle Scholar
  27. [27]
    Tapasztó, L.; Dobrik, G.; Nemes-Incze, P.; Vertesy, G.; Lambin, P.; Biró, L. P. Tuning the electronic structure of graphene by ion irradiation. Phys. Rev. B. 2008, 78, 233407.CrossRefADSGoogle Scholar
  28. [28]
    Eroms, J.; Weiss, D. Weak localization and transport gap in graphene antidot lattices. New J. Phys. 2009, 11, 095021.CrossRefADSGoogle Scholar
  29. [29]
    Masubuchi, S.; Ono, M.; Yoshida, K.; Hirakawa, K.; Machida, T. Fabrication of graphene nanoribbon by local anodic oxidation lithography using atomic force microscope. Appl. Phys. Lett. 2009, 94, 082107.CrossRefADSGoogle Scholar
  30. [30]
    Knoll, A.; Bächtold, P.; Bonan, J.; Cherubini, G.; Despont, M.; Drechsler, U.; Dürig, U.; Gotsmann, B.; Häberle, W.; Hagleitner, C.; Hagleitner, C.; Jubin, D.; Lantz, M. A.; Pantazi, A.; Pozidis, H.; Rothuizen, H.; Sebastian, A.; Stulz, R.; Vettiger, P.; Wiesmann, D.; Eleftheriou, E. S. Integrating nanotechnology into a working storage device. Microelectron. Eng. 2006, 83, 1692–1697.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Péter Nemes-Incze
    • 1
  • Gábor Magda
    • 2
  • Katalin Kamarás
    • 3
  • László Péter Biró
    • 1
  1. 1.Research Institute for Technical Physics and Materials ScienceBudapestHungary
  2. 2.Budapest University of Technology and Economics (BME)BudapestHungary
  3. 3.Research Institute for Solid State Physics and OpticsHungarian Academy of SciencesBudapestHungary

Personalised recommendations