Nano Research

, Volume 3, Issue 2, pp 103–109 | Cite as

PEGylation of double-walled carbon nanotubes for increasing their solubility in water

Open Access
Research Article

Abstract

Polyethylene glycol (PEG) functionalized double-walled carbon nanotubes (DWNTs) have been synthesized by a [2 + 1] cycloaddition reaction and characterized by transmission electron microscopy, atomic force microscopy, Raman spectroscopy, thermal gravimetric analysis, and UV-visible spectroscopy. Functionalization affords a large increase in the aqueous solubility of DWNTs. The saturated concentrations of DWNTs functionalized with diazido-terminated PEG800 (with a molecular weight of 800) and azido-terminated PEG750 monomethylether (with a molecular weight of 750) are very similar—0.36 and 0.37 mg/mL (DWNTs equivalent concentration), respectively.

Keywords

Double-walled carbon nanotubes (DWNTs) functionalization polyethylene glycol (PEG) water soluble 

Supplementary material

12274_2010_1014_MOESM1_ESM.pdf (1.1 mb)
Supplementary material, approximately 340 KB.

References

  1. [1]
    Wang, S.; Liang, X. L.; Chen, Q.; Zhang, Z. Y.; Peng, L. M. Field-effect characteristics and screening in double-walled carbon nanotube field-effect transistors. J. Phys. Chem. B 2005, 109, 17361–17366.CrossRefPubMedGoogle Scholar
  2. [2]
    Kuwahara, S.; Akita, S.; Shirakihara, M.; Sugai, T.; Nakayama, Y.; Shinohara, H. Fabrication and characterization of high-resolution AFM tips with high-quality double-wall carbon nanotubes. Chem. Phys. Lett. 2006, 429, 581–585.CrossRefADSGoogle Scholar
  3. [3]
    Wei, J. Q.; Zhu, H. W.; Wu, D. H.; Wei, B. Q. Carbon nanotube filaments in household light bulbs. Appl. Phys. Lett. 2004, 84, 4869–4871.CrossRefADSGoogle Scholar
  4. [4]
    Wei, J. Q.; Jia, Y.; Shu, Q. K.; Gu, Z. Y.; Wang, K. L.; Zhuang, D. M.; Zhang, G.; Wang, Z. C.; Luo, J. B.; Cao, A. Y.; Wu, D. H. Double-walled carbon nanotube solar cells. Nano Lett. 2007, 7, 2317–2321.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Dong, X. C.; Fu, D. L.; Xu, Y. P.; Wei, J. Q.; Shi, Y. M.; Chen, P.; Li, L. J. Label-free electronic detection of DNA using simple double-walled carbon nanotube resistors. J. Phys. Chem. C 2008, 112, 9891–9895.CrossRefGoogle Scholar
  6. [6]
    Bulusheva, L. G.; Gevko, P. N.; Okotrub, A. V.; Lavskaya, Y. V.; Yudanov, N. F.; Yudanova, L. I.; Abrosimov, O. G.; Pazhetnov, E. M.; Boronin, A. I.; Flahaut, E. Thermal behavior of fluorinated double-walled carbon nanotubes. Chem. Mater. 2006, 18, 4967–4971.CrossRefGoogle Scholar
  7. [7]
    Marcolongo, G.; Ruaro, G.; Gobbo, M.; Meneghetti, M. Amino acid functionalization of double-wall carbon nanotubes studied by Raman spectroscopy. Chem. Commun. 2007, 4925–4927.Google Scholar
  8. [8]
    Chang, J. Y.; Wu, H. Y.; Hwang, G. L.; Su, T. Y. Ultrasonication-assisted surface functionalization of double-walled carbon nanotubes with azobis-type radical initiators. J. Mater. Chem. 2008, 18, 3972–3976.CrossRefGoogle Scholar
  9. [9]
    Gao, C.; He, H. K.; Zhou, L.; Zheng, X.; Zhang, Y. Scalable functional group engineering of carbon nanotubes by improved one-step nitrene chemistry. Chem. Mater. 2009, 21, 360–370.CrossRefGoogle Scholar
  10. [10]
    Holzinger, M.; Vostrowsky, O.; Hirsch, A.; Hennrich, F.; Kappes, M.; Weiss, R.; Jellen, F. Sidewall functionalization of carbon nanotubes. Angew. Chem. Int. Ed. 2001, 40, 4002–4005.CrossRefGoogle Scholar
  11. [11]
    Holzinger, M.; Steinmetz, J.; Samaille, D.; Glerup, M.; Paillet, M.; Bernier, P.; Ley, L.; Graupner, R. [2+1] cycloaddition for cross-linking SWCNTs. Carbon 2004, 42, 941–947.CrossRefGoogle Scholar
  12. [12]
    Bahr, J. L.; Yang, J. P.; Kosynkin, D. V.; Bronikowski, M. J.; Smalley, R. E.; Tour, J. M. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode. J. Am. Chem. Soc. 2001, 123, 6536–6542.CrossRefPubMedGoogle Scholar
  13. [13]
    Qiu, H. X.; Shi, Z. J.; Guan, L. H.; You, L. P.; Gao, M.; Zhang, S. L.; Qiu, J. S.; Gu, Z. N. High-efficient synthesis of double-walled carbon nanotubes by arc discharge method using chloride as a promoter. Carbon 2006, 44, 516–521.CrossRefGoogle Scholar
  14. [14]
    Meunier, S. J.; Wu, Q. Q.; Wang, S. N.; Roy, R. Synthesis of hyperbranched glycodendrimers incorporating alpha-thiosialosides based on a gallic acid core. Can. J. Chem. 1997, 75, 1472–1482.CrossRefGoogle Scholar
  15. [15]
    Lyu, S. C.; Lee, T. J.; Yang, C. W.; Lee, C. J. Synthesis and characterization of high-quality double-walled carbon nanotubes by catalytic decomposition of alcohol. Chem. Commun. 2003, 1404–1405.Google Scholar
  16. [16]
    Sugai, T.; Yoshida, H.; Shimada, T.; Okazaki, T.; Shinohara, H. A new synthesis of high-quality double-walled carbon nanotubes by high-temperature pulsed arc discharge. Nano Lett. 2003, 3, 769–773.CrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  2. 2.Institute of Nanochemistry and NanobiologyShanghai UniversityShanghaiChina

Personalised recommendations