Nano Research

, Volume 3, Issue 2, pp 98–102 | Cite as

Lithography-free fabrication of high quality substrate-supported and freestanding graphene devices

  • Wenzhong Bao
  • Gang Liu
  • Zeng Zhao
  • Hang Zhang
  • Dong Yan
  • Aparna Deshpande
  • Brian LeRoy
  • Chun Ning Lau
Open Access
Research Article

Abstract

We present a lithography-free technique for fabrication of clean, high quality graphene devices. This technique is based on evaporation through hard Si shadow masks, and eliminates contaminants introduced by lithographical processes. We demonstrate that devices fabricated by this technique have significantly higher mobility values than those obtained by standard electron beam lithography. To obtain ultra-high mobility devices, we extend this technique to fabricate suspended graphene samples with mobilities as high as 120 000 cm2/(V·s).

Keywords

Suspended graphene shadow mask mobility lithography-free e-beam evaporation 

References

  1. [1]
    Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Bao, W. Z.; Miao, F.; Chen, Z.; Zhang, H.; Jang, W. Y.; Dames, C.; Lau, C. N. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat. Nanotechnol. 2009, 4, 562–566.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Cheianov, V. V.; Fal’ko, V. I. Selective transmission of Dirac electrons and ballistic magnetoresistance of np junctions in graphene. Phys. Rev. B 2006, 74, 041403.CrossRefADSGoogle Scholar
  8. [8]
    Katsnelson, M. I.; Novoselov, K. S.; Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2006, 2, 620–625.CrossRefGoogle Scholar
  9. [9]
    Peres, N. M. R.; Guinea, F.; Neto, A. H. C. Electronic properties of disordered two-dimensional carbon. Phys. Rev. B 2006, 73, 125411.CrossRefADSGoogle Scholar
  10. [10]
    Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 2008, 3, 491–495.CrossRefPubMedADSGoogle Scholar
  11. [11]
    Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Fundenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Comm. 2008, 146, 351–355.CrossRefADSGoogle Scholar
  12. [12]
    Chen, J. H.; Jang, C.; Adam, S.; Fuhrer, M. S.; Williams, E. D.; Ishigami, M. Charged-impurity scattering in graphene. Nat. Phys. 2008, 4, 377–381.CrossRefGoogle Scholar
  13. [13]
    Moser, J.; Barreiro, A.; Bachtold, A. Current-induced cleaning of graphene. Appl. Phys. Lett. 2007, 91, 163513.CrossRefADSGoogle Scholar
  14. [14]
    Girit, C. O.; Zettl, A. Soldering to a single atomic layer. Appl. Phys. Lett. 2007, 91, 193512.CrossRefADSGoogle Scholar
  15. [15]
    Staley, N.; Wang, H.; Puls, C.; Forster, J.; Jackson, T. N.; McCarthy, K.; Clouser, B.; Liu, Y. Lithography-free fabrication of graphene devices. Appl. Phys. Lett. 2007, 90, 143518.CrossRefADSGoogle Scholar
  16. [16]
    Deshmukh, M. M.; Ralph, D. C.; Thomas, M.; Silcox, J. Nanofabrication using a stencil mask. Appl. Phys. Lett. 1999, 75, 1631–1633.CrossRefADSGoogle Scholar
  17. [17]
    Zhou Y. X.; Johnson, A. T. Simple fabrication of molecular circuits by shadow mask evaporation. Nano Lett. 2003, 3, 1371–1374.CrossRefADSGoogle Scholar
  18. [18]
    Lishchynska, M.; Bourenkov, V.; van den Boogaart, M. A. F.; Doeswijk, L.; Brugger, J.; Greer, J. C. Predicting mask distortion, clogging and pattern transfer for stencil lithography. Microelectron. Eng. 2007, 84, 42–53.CrossRefGoogle Scholar
  19. [19]
    Egger, S.; Ilie, A.; Fu, Y. T.; Chongsathien, J.; Kang, D. J.; Welland, M. E. Dynamic shadow mask technique: A universal tool for nanoscience. Nano Lett. 2005, 5, 15–20.CrossRefPubMedADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Wenzhong Bao
    • 1
  • Gang Liu
    • 1
  • Zeng Zhao
    • 1
  • Hang Zhang
    • 1
  • Dong Yan
    • 2
  • Aparna Deshpande
    • 3
  • Brian LeRoy
    • 3
  • Chun Ning Lau
    • 1
  1. 1.Department of Physics and AstronomyUniversity of CaliforniaRiversideUSA
  2. 2.Center for Nanoscale Science and EngineeringUniversity of CaliforniaRiversideUSA
  3. 3.Department of PhysicsUniversity of ArizonaTucsonUSA

Personalised recommendations