Nano Research

, Volume 3, Issue 2, pp 138–145 | Cite as

Radical addition of perfluorinated alkyl iodides to multi-layered graphene and single-walled carbon nanotubes

Open Access
Research Article

Abstract

A simple one-pot reaction that serves to functionalize graphite nanosheets (graphene) and single-walled carbon nanotubes (SWNTs) with perfluorinated alkyl groups is reported. Free radical addition of 1-iodo-1H,1H,2H, 2H-perfluorododecane to ortho-dichlorobenzene suspensions of the carbon nanomaterial is initiated by thermal decomposition of benzoyl peroxide. Similarly, UV photolysis of 1-iodo-perfluorodecane serves to functionalize the carbon materials. Perfluorododecyl-SWNTs, perfluorododecyl-graphene, and perfluorodecyl-graphene are characterized by infrared (IR) and Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and atomic force microscopy (AFM). The products show enhanced dispersability in CHCl3 as compared to unfunctionalized starting materials. The advantage of this one-pot functionalization procedure lies in the use of pristine graphite as starting material thereby avoiding the use of harsh oxidizing conditions.

Keywords

Nanotube single-walled carbon nanotube graphene radical addition 

Supplementary material

12274_2010_1007_MOESM1_ESM.pdf (675 kb)
Supplementary material, approximately 340 KB.

References

  1. [1]
    Bahr, J. L.; Tour, J. M. Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem. 2002, 12, 1952–1958.CrossRefGoogle Scholar
  2. [2]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Dyke, C. A.; Tour, J. M. Covalent functionalization of single-walled carbon nanotubes for materials applications. J. Phys. Chem. A 2004, 108, 11151–11159.CrossRefGoogle Scholar
  4. [4]
    Adams, D. J.; Dyson, P. J.; Tavener, S. J. In Chemistry in Alternative Reaction Media. Wiley: Sussex, 2004; pp. 57–71.Google Scholar
  5. [5]
    Hamilton, C. E.; Ogrin, D.; McJilton, L.; Moore, V. C.; Anderson, R.; Smalley, R. E.; Barron, A. R. Functionalization of SWNTs to facilitate the coordination of metal ions, compounds and clusters. Dalton Trans. 2008, 2937–2944.Google Scholar
  6. [6]
    Smalley, R. E.; Li, Y.; Moore, V. C.; Price, B. K.; Colorado, R. Jr.; Schmidt, H. K.; Hauge, R. H.; Barron, A. R.; Tour, J. M. Single wall carbon nanotubes amplification: En route to a type-specific growth mechanism. J. Am. Chem. Soc. 2006, 128, 15824–15829.CrossRefPubMedGoogle Scholar
  7. [7]
    Fagan, P. J.; Krusic, P. J.; McEwen, C. N.; Lazar, J.; Parker, D. H.; Herron, N.; Wasserman, E. Production of perfluoroalkylated nanospheres from buckminsterfullerene. Science 1993, 262, 404–07.CrossRefPubMedADSGoogle Scholar
  8. [8]
    Holzinger, M.; Vostrowsky, O.; Hirsch, A.; Hennrich, F.; Kappes, M.; Weiss, R.; Jellen, F. Sidewall functionalization of carbon nanotubes. Angew. Chem. Int. Ed. 2001, 40, 4002–4005.CrossRefGoogle Scholar
  9. [9]
    Voggu, R.; Biswas, K.; Govindaraj, A.; Rao, C. N. R. Use of fluorous chemistry in the solubilization and phase transfer of nanocrystals, nanorods, and nanotubes. J. Phys. Chem. B 2006, 110, 20752–20755.CrossRefPubMedGoogle Scholar
  10. [10]
    Pulikkathara, M. X.; Kuznetsov, O. V.; Peralta, I. R. G.; Wei, X.; Khabashesku, V. N. Medium density polyethylene composites with functionalized carbon nanotubes. Nanotechnol. 2009, 20, 195602–195605.CrossRefADSGoogle Scholar
  11. [11]
    Ying, Y. M.; Saini, R. K.; Liang, F.; Sadana, A. K.; Billups, W. E. Functionalization of carbon nanotubes by free radicals. Org. Lett. 2003, 5, 1471–1473.CrossRefPubMedGoogle Scholar
  12. [12]
    Liang, F.; Beach, J. M.; Rai, P. K.; Guo, W. H.; Hauge, R. H.; Pasquali, M.; Smalley, R. E.; Billups, W. E. Highly exfoliated water-soluble single-walled carbon nanotubes. Chem. Mater. 2006, 18, 1520–1524.CrossRefGoogle Scholar
  13. [13]
    Armarego, W. L. F.; Perrin, D. D. In Purification of Laboratory Chemicals. Butterworth-Heinemann: Oxford, 4th Ed., 1997; p. 105.Google Scholar
  14. [14]
    Chiang, I. W.; Brinson, B. E.; Huang, A. Y.; Willis, P. A.; Bronikowski, M. J.; Margrave, J. L.; Smalley, R. E.; Hauge, R. H. Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process). J. Phys. Chem. B 2001, 105, 8297–8301.CrossRefGoogle Scholar
  15. [15]
    Ziegler, K. J.; Gu, Z. N.; Peng, H. Q.; Flor, E. L.; Hauge, R. H.; Smalley, R. E. Controlled oxidative cutting of single-walled carbon nanotubes. J. Am. Chem. Soc. 2005, 127, 1541–1547.CrossRefPubMedGoogle Scholar
  16. [16]
    Hamilton, C. E.; Lomeda, J. R.; Sun, Z. Z.; Tour, J. M.; Barron, A. R. High-yield organic dispersions of unfunctionalized graphene. Nano Lett. 2009, 9, 3460–3462.CrossRefPubMedADSGoogle Scholar
  17. [17]
    NIST XPS spectral database, http://srdata.nist.gov/xps/ (access Oct 5, 2009).
  18. [18]
    Zhang, L.; Zhang, J.; Schmandt, N.; Cratty, J.; Khabashesku, V. N.; Kelly, K. F.; Barron, A. R. AFM and STM characterization of thiol and thiophene functionalized SWNTs: Pitfalls in the use of gold nanoparticles to determine the extent of side-wall functionalization in SWNTs. Chem. Commun. 2005, 5429–5430.Google Scholar
  19. [19]
    Lerf, A.; He, H. Y.; Forster, M.; Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B 1998, 102, 4477–4482.CrossRefGoogle Scholar
  20. [20]
    Chattopadhyay, J.; Mukherjee, A.; Hamilton, C. E.; Kang, J. -H.; Chakraborty, S.; Guo, W. H.; Kelly, K. F.; Barron, A. R.; Billups, W. E. Graphite epoxide. J. Am. Chem. Soc. 2008, 130, 5414–5415.CrossRefPubMedGoogle Scholar
  21. [21]
    Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.CrossRefPubMedADSGoogle Scholar
  22. [22]
    Chakraborty, S.; Guo, W.; Hauge, R. H.; Billups, W. E. Reductive alkylation of fluorinated graphite. Chem. Mater. 2008, 20, 3134–3136.CrossRefGoogle Scholar
  23. [23]
    Chakraborty, S.; Chattopadhyay, J.; Guo, W. H.; Billups, W. E. Functionalization of potassium graphite. Angew. Chem. Int. Ed. 2007, 46, 4486–4488.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Richard E. Smalley Institute for Nanoscale Science and Technology, Department of Chemistry and Department of Mechanical Engineering and Materials ScienceRice UniversityHoustonUSA

Personalised recommendations