Nano Research

, Volume 4, Issue 3, pp 297–307 | Cite as

Monolayer graphene as a saturable absorber in a mode-locked laser

  • Qiaoliang Bao
  • Han Zhang
  • Zhenhua Ni
  • Yu Wang
  • Lakshminarayana Polavarapu
  • Zexiang Shen
  • Qing-Hua Xu
  • Dingyuan Tang
  • Kian Ping Loh
Open Access
Research Article

Abstract

We demonstrate that the intrinsic properties of monolayer graphene allow it to act as a more effective saturable absorber for mode-locking fiber lasers when compared to multilayer graphene. The absorption of monolayer graphene can be saturated at lower excitation intensity compared to multilayer graphene, graphene with wrinkle-like defects, or functionalized graphene. Monolayer graphene has a remarkably large modulation depth of 65.9%, whereas the modulation depth of multilayer graphene is greatly reduced due to nonsaturable absorption and scattering loss. Picosecond ultrafast laser pulses (1.23 ps) can be generated using monolayer graphene as a saturable absorber. Due to the ultrafast relaxation time, larger modulation depth and lower scattering loss of monolayer graphene, it performs better than multilayer graphene in terms of pulse shaping ability, pulse stability, and output energy.

Keywords

Graphene saturable absorber laser carrier dynamics ultrafast photonics 

Supplementary material

12274_2010_82_MOESM1_ESM.pdf (365 kb)
Supplementary material, approximately 363 KB.

References

  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  2. [2]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.CrossRefGoogle Scholar
  3. [3]
    George, P. A.; Strait, J.; Dawlaty, J.; Shivaraman, S.; Chandrashekhar, M.; Rana, F.; Spencer, M. G. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Lett. 2008, 8, 4248–4251.CrossRefGoogle Scholar
  4. [4]
    Sun, D.; Wu, Z. K.; Divin, C.; Li, X. B.; Berger, C.; de Heer, W. A.; First, P. N.; Norris, T. B. Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Phys. Rev. Lett. 2008, 101, 157402.CrossRefGoogle Scholar
  5. [5]
    Kuzmenko, A. B.; van Heumen, E.; Carbone, F.; van der Marel, D. Universal optical conductance of graphite. Phys. Rev. Lett. 2008, 100, 117401.CrossRefGoogle Scholar
  6. [6]
    Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308.CrossRefGoogle Scholar
  7. [7]
    Bao, Q.; Zhang, H.; Wang, Y.; Ni, Z.; Yan, Y.; Shen, Z. X.; Loh, K. P.; Tang, D. Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 2009, 19, 3077–3083.CrossRefGoogle Scholar
  8. [8]
    Zhang, H.; Tang, D. Y.; Zhao, L. M.; Bao, Q.; Loh, K. P. Large energy mode-locking of an erbium-doped fiber laser with atomic layer graphene. Opt. Express 2009, 17, 17630–17635.CrossRefGoogle Scholar
  9. [9]
    Zhang, H.; Tang, D.; Knize, R. J.; Zhao, L.; Bao, Q.; Loh, K. P. Graphene mode-locked, wavelength-tunable, dissipative soliton fiber laser. Appl. Phys. Lett. 2010, 96, 111112.CrossRefGoogle Scholar
  10. [10]
    Zhang, H.; Bao, Q.; Tang, D. Y.; Zhao, L.; Loh, K. P. Large energy soliton erbium-doped fiber laser with a graphenepolymer composite mode-locker. Appl. Phys. Lett. 2009, 95, 141103.Google Scholar
  11. [11]
    Bao, Q.; Zhang, H.; Yang, J. X.; Wang, S.; Tang, D. Y.; Jose, R.; Ramakrishna, S.; Lim, C. T.; Loh, K. P. Graphenepolymer nanofiber membrane for ultrafast photonics. Adv. Funct. Mater. 2010, 20, 782–791.CrossRefGoogle Scholar
  12. [12]
    Song, Y. W.; Jang, S. Y.; Han, W. S.; Bae, M. K. Graphene mode-lockers for fiber lasers functioned with evanescent field interaction. Appl. Phys. Lett. 2010, 96, 051122.CrossRefGoogle Scholar
  13. [13]
    Sun, Z.; Hasan, T.; Torrisi, F.; Popa, D.; Privitera, G.; Wang, F.; Bonaccorso, F.; Basko, D. M.; Ferrari, A. C. Graphene mode-locked ultrafast laser. ACS Nano 2010, 4, 803–810.CrossRefGoogle Scholar
  14. [14]
    Xu, S.; Cao, J.; Miller, C. C.; Mantell, D. A.; Miller, R. J. D.; Gao, Y. Energy dependence of electron lifetime in graphite observed with femtosecond photoemission spectroscopy. Phys. Rev. Lett. 1996, 76, 483–486.CrossRefGoogle Scholar
  15. [15]
    Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.CrossRefGoogle Scholar
  16. [16]
    Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.CrossRefGoogle Scholar
  17. [17]
    Li, X.; Cai, W.; Colombo, L.; Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009, 9, 4268–4272.CrossRefGoogle Scholar
  18. [18]
    Ferrari, A.; Meyer, J.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.; Roth, S. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.CrossRefGoogle Scholar
  19. [19]
    Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.; Fasoli, A.; Novoselov, K.; Basko, D.; Ferrari, A. Raman spectroscopy of graphene edges. Nano Lett. 2009, 9, 1433–1441.CrossRefGoogle Scholar
  20. [20]
    Keller, U.; Weingarten, K. J.; Kärtner, F. X.; Kopf, D.; Braun, B.; Jung, I. D.; Fluck, R.; Hönninger, C.; Matuschek, N.; der Au, J. A. Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 435–453.CrossRefGoogle Scholar
  21. [21]
    Keller, U. Recent developments in compact ultrafast lasers. Nature 2003, 424, 831–838.CrossRefGoogle Scholar
  22. [22]
    Dawlaty, J. M.; Shivaraman, S.; Chandrashekhar, M.; Rana, F.; Spencer, M. G. Measurement of ultrafast carrier dynamics in epitaxial graphene. Appl. Phys. Lett. 2008, 92, 042116.CrossRefGoogle Scholar
  23. [23]
    Newson, R. W.; Dean, J.; Schmidt, B.; van Driel, H. M. Ultrafast carrier kinetics in exfoliated graphene and thin graphite films. Opt. Express 2009, 17, 2326–2333.CrossRefGoogle Scholar
  24. [24]
    Kumar, S.; Anija, M.; Kamaraju, N.; Vasu, K. S.; Subrahmanyam, K. S.; Sood, A. K.; Rao, C. N. R. Femtosecond carrier dynamics and saturable absorption in graphene suspensions. Appl. Phys. Lett. 2009, 95, 191911.CrossRefGoogle Scholar
  25. [25]
    Rana, F. Electron-hole generation and recombination rates for Coulomb scattering in graphene. Phys. Rev. B 2007, 76, 155431.Google Scholar
  26. [26]
    Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S.; Waghmare, U.; Novoselov, K.; Krishnamurthy, H.; Geim, A.; Ferrari, A. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.CrossRefGoogle Scholar
  27. [27]
    Yan, J.; Zhang, Y.; Kim, P.; Pinczuk, A. Electric field effect tuning of electron-phonon coupling in graphene. Phys. Rev. Lett. 2007, 98, 166802.CrossRefGoogle Scholar
  28. [28]
    González, J.; Guinea, F.; Vozmediano, M. A. H. Unconventional quasiparticle lifetime in graphite. Phys. Rev. Lett. 1996, 77, 3589–3592.CrossRefGoogle Scholar
  29. [29]
    Spataru, C. D.; Cazalilla, M. A.; Rubio, A.; Benedict, L. X.; Echenique, P. M.; Louie, S. G. Anomalous quasiparticle lifetime in graphite: Band structure effects. Phys. Rev. Lett. 2001, 87, 246405.CrossRefGoogle Scholar
  30. [30]
    Moos, G.; Gahl, C.; Fasel, R.; Wolf, M.; Hertel, T. Anisotropy of quasiparticle lifetimes and the role of disorder in graphite from ultrafast time-resolved photoemission spectroscopy. Phys. Rev. Lett. 2001, 87, 267402.CrossRefGoogle Scholar
  31. [31]
    Zhang, H.; Tang, D. Y.; Zhao, L. M.; Xiang, N. Coherent energy exchange between components of a vector soliton in fiber lasers. Opt. Express 2008, 16, 12618–12623.Google Scholar
  32. [32]
    Tang, D. Y.; Zhang, H.; Zhao, L. M.; Wu, X. Observation of high-order polarization-locked vector solitons in a fiber laser. Phys. Rev. Lett. 2008, 101, 153904.CrossRefGoogle Scholar
  33. [33]
    Zhang, H.; Tang, D. Y.; Zhao, L. M.; Bao, Q. L.; Loh, K. P.; Lin, B.; Tjin, S. C. Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: From all anomalous dispersion to all normal dispersion. Laser Phys. Lett. 2010, 7, 591–596.CrossRefGoogle Scholar
  34. [34]
    Scardaci, V.; Rozhin, A. G.; Tan, P. H.; Wang, F.; White, I. H.; Milne, W. I.; Ferrari, A. C. Carbon nanotubes for ultrafast photonics. Phys. Status Solidi B 2007, 244, 4303–4307.CrossRefGoogle Scholar
  35. [35]
    Scardaci, V.; Sun, Z.; Wang, F.; Rozhin, A.; Hasan, T.; Hennrich, F.; White, I.; Milne, W.; Ferrari, A. Carbon nanotube polycarbonate composites for ultrafast lasers. Adv. Mater. 2008, 20, 4040–4043.CrossRefGoogle Scholar
  36. [36]
    Yamashita, S.; Inoue, Y.; Maruyama, S.; Murakami, Y.; Yaguchi, H.; Jablonski, M.; Set, S. Y. Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers. Opt. Lett. 2004, 29, 1581–1583.CrossRefGoogle Scholar
  37. [37]
    Wise, F.; Chong, A.; Renninger, W. High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion. Laser Photonics Rev. 2008, 2, 58–73.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Qiaoliang Bao
    • 1
  • Han Zhang
    • 2
  • Zhenhua Ni
    • 3
  • Yu Wang
    • 1
  • Lakshminarayana Polavarapu
    • 1
  • Zexiang Shen
    • 3
  • Qing-Hua Xu
    • 1
  • Dingyuan Tang
    • 2
  • Kian Ping Loh
    • 1
  1. 1.Department of ChemistryNational University of SingaporeSingaporeSingapore
  2. 2.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore

Personalised recommendations