Nano Research

, Volume 4, Issue 3, pp 266–273 | Cite as

A miniature droplet reactor built on nanoparticle-derived superhydrophobic pedestals

Open Access
Research Article


The capability to design and modulate materials, shapes, heat transfer, and mass mixing during the process of developing chemical reactors has allowed researchers to explore millions of chemical reactions and assays. However, despite the advantages in engineering array-based microreactors or microfluidic systems, the wetting attachment between solutions of reagents/products and the glass or polymer substrates of containers leads to difficulties in collecting products effectively and preventing channel blockage. Herein we present a miniature droplet reactor which takes advantage of the anti-wetting and low-adhesive properties of nanoparticle-derived superhydrophobic pedestals, allowing aqueous droplets to be manipulated freely but also providing a confined environment for performing a series of aqueous phase chemical reactions on a small scale. Gas- or precipitate-forming reactions can also be performed inside this miniature reactor. Most importantly, reaction products in liquid, solid or gaseous states can be collected effectively, which allows the harvesting of valuable products formed in limited amounts. Such a miniature reactor built on superhydrophobic pedestals provides a new way of performing common chemical reactions and may open the door to the design of next-generation microreaction systems.


Superhydrophobic reactor droplet hybrid materials nanomaterials 

Supplementary material

12274_2010_78_MOESM1_ESM.pdf (1.9 mb)
Supplementary material, approximately 1.94 MB.


  1. [1]
    Crosland, M. Lavoisier: Chemist, biologist, economist—Poirier, JP. Nature 1997, 387, 250–251.CrossRefGoogle Scholar
  2. [2]
    Chertok, L.; Stengers, I. Therapy and the ideal of chemistry. Nature 1987, 329, 768.CrossRefGoogle Scholar
  3. [3]
    Lopez-Quintela, M. A.; Tojo, C.; Blanco, M. C.; Rio, L. G.; Leis, J. R. Microemulsion dynamics and reactions in microemulsions. Curr. Opin. Colloid. In. 2004, 9, 264–278.CrossRefGoogle Scholar
  4. [4]
    Gross, G. A.; Wurziger, H.; Schlingloff, G.; Schober, A. Microreactor array assembly, designed for diversity oriented synthesis using a multiple core structure library on solid support. Qsar. Comb. Sci. 2006, 25, 1055–1062.CrossRefGoogle Scholar
  5. [5]
    deMello, A. J. Control and detection of chemical reactions in microfluidic systems. Nature 2006, 442, 394–402.CrossRefGoogle Scholar
  6. [6]
    Kobayashi, J.; Mori, Y.; Okamoto, K.; Akiyama, R.; Ueno, M.; Kitamori, T.; Kobayashi, S. A microfluidic device for conducting gas-liquid-solid hydrogenation reactions. Science 2004, 304, 1305–1308.CrossRefGoogle Scholar
  7. [7]
    Haswell, S. J. Chemical technology—All together now. Nature 2006, 441, 705.CrossRefGoogle Scholar
  8. [8]
    Song, H.; Chen, D. L.; Ismagilov, R. F. Reactions in droplets in microflulidic channels. Angew. Chem. Int. Edit. 2006, 45, 7336–7356.CrossRefGoogle Scholar
  9. [9]
    Adams, J. B.; Hector, L. G.; Siegel, D. J.; Yu, H. L.; Zhong, J. Adhesion, lubrication, and wear on the atomic scale. Surf. Interface. Anal. 2001, 31, 619–626.CrossRefGoogle Scholar
  10. [10]
    Cognard, J. Some recent progress in adhesion technology and science. C. R. Chim. 2006, 9, 13–24.CrossRefGoogle Scholar
  11. [11]
    Marshall, S. J.; Bayne, S. C.; Baier, R.; Tomsia, A. P.; Marshall, G. W. A review of adhesion science. Dent. Mater. 2010, 26, E11–E16.CrossRefGoogle Scholar
  12. [12]
    Blossey, R. Self-cleaning surfaces—virtual realities. Nat. Mater. 2003, 2, 301–306.CrossRefGoogle Scholar
  13. [13]
    Chaudhury, M. K.; Whitesides, G. M. How to make water run uphill. Science 1992, 256, 1539–1541.CrossRefGoogle Scholar
  14. [14]
    Gao, X. F.; Jiang, L. Water-repellent legs of water striders. Nature 2004, 432, 36.CrossRefGoogle Scholar
  15. [15]
    Li, X. M.; Reinhoudt, D.; Crego-Calama, M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev. 2007, 36, 1350–1368.CrossRefGoogle Scholar
  16. [16]
    Zheng, Y. M.; Bai, H.; Huang, Z. B.; Tian, X. L.; Nie, F. Q.; Zhao, Y.; Zhai, J.; Jiang, L. Directional water collection on wetted spider silk. Nature 2010, 463, 640–643.CrossRefGoogle Scholar
  17. [17]
    Daniel, S.; Chaudhury, M. K.; Chen, J. C. Past drop movements resulting from the phase change on a gradient surface. Science 2001, 291, 633–636.CrossRefGoogle Scholar
  18. [18]
    Yang, J. T.; Yang, Z. H.; Chen, C. Y.; Yao, D. J. Conversion of surface energy and manipulation of a single droplet across micropatterned surfaces. Langmuir 2008, 24, 9889–9897.CrossRefGoogle Scholar
  19. [19]
    Sun, T. L.; Feng, L.; Gao, X. F.; Jiang, L. Bioinspired surfaces with special wettability. Accounts. Chem. Res. 2005, 38, 644–652.CrossRefGoogle Scholar
  20. [20]
    Liu, M. J.; Zheng, Y. M.; Zhai, J.; Jiang, L. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Accounts. Chem. Res. 2009, 43, 368–377.CrossRefGoogle Scholar
  21. [21]
    Roach, P.; Shirtcliffe, N. J.; Newton, M. I. Progess in superhydrophobic surface development. Soft Matter. 2008, 4, 224–240.CrossRefGoogle Scholar
  22. [22]
    van Oss, C. J.; Giese, R. F. Role of the properties and structure of liquid water in colloidal and interfacial systems. J. Disper. Sci. Technol. 2004, 25, 631–655.Google Scholar
  23. [23]
    Trudeau, T. G.; Jena, K. C.; Hore, D. K. Water structure at solid surfaces of varying hydrophobicity. J. Phys. Chem. C. 2009, 113, 20002–20008.CrossRefGoogle Scholar
  24. [24]
    Matta, C. F.; Hernandez-Trujillo, J.; Tang, T. H.; Bader, R. F. W. Hydrogen-hydrogen bonding: A stabilizing interaction in molecules and crystals. Chem. Eur. J. 2003, 9, 1940–1951.CrossRefGoogle Scholar
  25. [25]
    Abraham, F. F. The interfacial density profile of a Lennard-Jones fluid in contact with a (100) Lennard-Jones wall and its relationship to idealized fluid/wall systems: A Monte Carlo simulation. J. Chem. Phys. 1978, 68, 3713–3716.CrossRefGoogle Scholar
  26. [26]
    Kim, S. H.; Lee, S. Y.; Yang, S. M. Janus microspheres for a highly flexible and impregnable water-repelling interface. Angew. Chem. Int. Edit. 2010, 49, 2535–2538.CrossRefGoogle Scholar
  27. [27]
    Hong, X.; Gao, X. F.; Jiang, L. Application of superhydrophobic surface with high adhesive force in no lost transport of superparamagnetic microdroplet. J. Am. Chem. Soc. 2007, 129, 1478–1479.CrossRefGoogle Scholar
  28. [28]
    Zhao, Y.; Fang, J.; Wang, H. X.; Wang, X. G.; Lin, T. Magnetic liquid marbles: Manipulation of liquid droplets using highly hydrophobic Fe3O4 nanoparticles. Adv. Mater. 2010, 22, 707–710.CrossRefGoogle Scholar
  29. [29]
    Zhang, K.; Liang, Q. L.; Ma, S.; Mu, X. A.; Hu, P.; Wang, Y. M.; Luo, G. A. On-chip manipulation of continuous picoliter-volume superparamagnetic droplets using a magnetic force. Lab. Chip. 2009, 9, 2992–2999.CrossRefGoogle Scholar
  30. [30]
    Velev, O. D.; Prevo, B. G.; Bhatt, K. H. On-chip manipulation of free droplets. Nature 2003, 426, 515–516.CrossRefGoogle Scholar
  31. [31]
    Hunt, T. P.; Issadore, D.; Westervelt, R. M. Integrated circuit/microfluidic chip to programmably trap and move cells and droplets with dielectrophoresis. Lab. Chip 2008, 8, 81–87.CrossRefGoogle Scholar
  32. [32]
    Ichimura, K.; Oh, S. K.; Nakagawa, M. Light-driven motion of liquids on a photoresponsive surface. Science 2000, 288, 1624–1626.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Beijing National Laboratory for Molecular Science (BNLMS), Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations