Nano Research

, Volume 3, Issue 10, pp 748–756 | Cite as

Laterally confined graphene nanosheets and graphene/SnO2 composites as high-rate anode materials for lithium-ion batteries

  • Zhiyong Wang
  • Hao Zhang
  • Nan Li
  • Zujin Shi
  • Zhennan Gu
  • Gaoping Cao
Open Access
Research Article

Abstract

High-rate anode materials for lithium-ion batteries are desirable for applications that require high power density. We demonstrate the advantageous rate capability of few-layered graphene nanosheets, with widths of 100–200 nm, over micro-scale graphene nanosheets. Possible reasons for the better performance of the former include their smaller size and better conductivity than the latter. Combination of SnO2 nanoparticles with graphene was used to further improve the gravimetric capacities of the electrode at high charge-discharge rates. Furthermore, the volumetric capacity of the composites was substantially enhanced compared to pristine graphene due to the higher density of the composites.

Keywords

Carbon graphene anode lithium-ion batteries SnO2 nanomaterials 

Supplementary material

12274_2010_41_MOESM1_ESM.pdf (606 kb)
Supplementary material, approximately 605 KB.

References

  1. [1]
    Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4301.CrossRefPubMedGoogle Scholar
  2. [2]
    Kang, K. S.; Meng, Y. S.; Breger, J.; Grey, C. P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311, 977–980.CrossRefADSPubMedGoogle Scholar
  3. [3]
    Lee, Y. J.; Yi, H.; Kim, W.; Kang, K.; Yun, D. S.; Strano, M. S.; Ceder, G.; Belcher, A. M. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science 2009, 324, 1051–1055.ADSPubMedGoogle Scholar
  4. [4]
    Levi, M. D.; Aurbach, D. Diffusion coefficients of lithium ions during intercalation into graphite derived from the simultaneous measurements and modeling of electrochemical impedance and potentiostatic intermittent titration characteristics of thin graphite electrodes. J. Phys. Chem. B 1997, 101, 4641–4647.CrossRefGoogle Scholar
  5. [5]
    Bueno, P. R.; Leite, E. R. Nanostructured Li ion insertion electrodes. 1. Discussion on fast transport and short path for ion diffusion. J. Phys. Chem. B 2003, 107, 8868–8877.CrossRefGoogle Scholar
  6. [6]
    Li, N. C.; Martin, C. R.; Scrosati, B. Nanomaterial-based Li-ion battery electrodes. J. Power Sources 2001, 97-98, 240–243.CrossRefGoogle Scholar
  7. [7]
    Sides, C. R.; Martin, C. R. Nanostructured electrodes and the low-temperature performance of Li-ion batteries. Adv. Mater. 2005, 17, 125–128.CrossRefGoogle Scholar
  8. [8]
    Patrissi, C. J.; Martin, C. R. Improving the volumetric energy densities of nanostructured V2O5 electrodes prepared using the template method. J. Electrochem. Soc. 2001, 148, A1247–A1253.CrossRefGoogle Scholar
  9. [9]
    Fu, L. J.; Zhang, T.; Cao, Q.; Zhang, H. P.; Wu, Y. P. Preparation and characterization of three-dimensionally ordered mesoporous titania microparticles as anode material for lithium ion battery. Electrochem. Commun. 2007, 9, 2140–2144.CrossRefGoogle Scholar
  10. [10]
    Hu, Y. S.; Kienle, L.; Guo, Y. G.; Maier, J. High lithium electroactivity of nanometer-sized rutile TiO2. Adv. Mater. 2006, 18, 1421–1426.CrossRefGoogle Scholar
  11. [11]
    Armstrong, A. R.; Armstrong, G.; Canales, J.; Garcia, R.; Bruce, P. G. Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater. 2005, 17, 862–865.CrossRefGoogle Scholar
  12. [12]
    Zaghib, K.; Brochu, F.; Guerfi, A.; Kinoshita, K. Effect of particle size on lithium intercalation rates in natural graphite. J. Power Sources 2001, 103, 140–146.CrossRefGoogle Scholar
  13. [13]
    Hu, Y. S.; Adelhelm, P.; Smarsly, B. M.; Hore, S.; Antonietti, M.; Maier, J. Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability. Adv. Funct. Mater. 2007, 17, 1873–1878.CrossRefGoogle Scholar
  14. [14]
    Li, N. C.; Mitchell, D. T.; Lee, K. P.; Martin, C. R. A nano-structured honeycomb carbon anode. J. Electrochem. Soc. 2003, 150, A979–A984.CrossRefGoogle Scholar
  15. [15]
    Lee, K. T.; Lytle, J. C.; Ergang, N. S.; Oh, S. M.; Stein, A. Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries. Adv. Funct. Mater. 2005, 15, 547–556.CrossRefGoogle Scholar
  16. [16]
    Zhang, F.; Wang, K. X.; Li, G. D.; Chen, J. S. Hierarchical porous carbon derived from rice straw for lithium ion batteries with high-rate performance. Electrochem. Commun. 2009, 11, 130–133.CrossRefGoogle Scholar
  17. [17]
    Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.; Kudo, T.; Honma, I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 2008, 8, 2277–2282.CrossRefADSPubMedGoogle Scholar
  18. [18]
    Tatsumi, K.; Iwashita, N.; Sakaebe, H.; Shioyama, H.; Higuchi, S.; Mabuchi, A.; Fujimoto, H. The influence of the graphitic structure on the electrochemical characteristics for the anode of secondary lithium batteries. J. Electrochem. Soc. 1995, 142, 716–720.CrossRefGoogle Scholar
  19. [19]
    Paek, S. M.; Yoo, E.; Honma, I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 2009, 9, 72–75.CrossRefADSPubMedGoogle Scholar
  20. [20]
    Wang, D. H.; Choi, D. W.; Li, J.; Yang, Z. G.; Nie, Z. M.; Kou, R.; Hu, D. H.; Wang, C. M.; Saraf, L. V.; Zhang, J. G.; Aksay, I. A.; Liu, J. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 2009, 3, 907–914.CrossRefPubMedGoogle Scholar
  21. [21]
    Li, N.; Wang, Z. Y.; Zhao, K. K.; Shi, Z. J.; Gu, Z. N.; Xu, S. K. Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 2010, 48, 255–259.CrossRefGoogle Scholar
  22. [22]
    Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.CrossRefGoogle Scholar
  23. [23]
    Habazaki, H.; Kiriu, M.; Konno, H. High rate capability of carbon nanofilaments with platelet structure as anode materials for lithium ion batteries. Electrochem. Commun. 2006, 8, 1275–1279.CrossRefGoogle Scholar
  24. [24]
    Wang, G. X.; Ahn, J. H.; Lindsay, M. J.; Sun, L.; Bradhurst, D. H.; Dou, S. X.; Liu, H. K. Graphite-tin composites as anode materials for lithium-ion batteries. J. Power Sources 2001, 97-98, 211–215.CrossRefGoogle Scholar
  25. [25]
    Wen, Z. H.; Wang, Q.; Zhang, Q.; Li, J. H. In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: A novel composite with porous-tube structure as anode for lithium batteries. Adv. Funct. Mater. 2007, 17, 2772–2778.CrossRefGoogle Scholar
  26. [26]
    Zhang, W. M.; Hu, J. S.; Guo, Y. G.; Zheng, S. F.; Zhong, L. S.; Song, W. G.; Wan, L. J. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv. Mater. 2008, 20, 1160–1165.CrossRefGoogle Scholar
  27. [27]
    Lou, X. W.; Li, C. M.; Archer, L. A. Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Adv. Mater. 2009, 21, 2536–2539.CrossRefGoogle Scholar
  28. [28]
    Courtney, I. A.; Dahn, J. R. Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc. 1997, 144, 2045–2052.CrossRefGoogle Scholar
  29. [29]
    Sivashanmugam, A.; Kumar, T. P.; Renganathan, N. G.; Gopukumar, S.; Wohlfahrt-Mehrens, M.; Garche, J. Electrochemical behavior of Sn/SnO2 mixtures for use as anode in lithium rechargeable batteries. J. Power Sources 2005, 144, 197–203.CrossRefGoogle Scholar
  30. [30]
    Zhao, Y. M.; Zhou, Q.; Liu, L.; Xu, J.; Yan, M. M.; Jiang, Z. Y. A novel and facile route of ink-jet printing to thin film SnO2 anode for rechargeable lithium ion batteries. Electrochim. Acta 2006, 51, 2639–2645.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Zhiyong Wang
    • 1
  • Hao Zhang
    • 2
  • Nan Li
    • 1
  • Zujin Shi
    • 1
  • Zhennan Gu
    • 1
  • Gaoping Cao
    • 2
  1. 1.Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  2. 2.Research Institute of Chemical DefenseBeijingChina

Personalised recommendations