Nano Research

, Volume 3, Issue 10, pp 738–747 | Cite as

Movable Au microplates as fluorescence enhancing substrates for live cells

  • Boya Radha
  • Mohammed Arif
  • Ranjan Datta
  • Tapas K. Kundu
  • Giridhar U. Kulkarni
Open Access
Research Article

Abstract

Hexagonal and triangular Au microplates extending over an area of ?12,000 ?m2 with thickness in the range 30–1000 nm have been synthesized using a single step thermolysis of (AuCl4)?-tetraoctylammonium bromide complex in air. The microplates are self-supporting and can be easily manipulated using a sharp pin, a property which enables them to serve as substrates for living cells. The microplate surface is non-toxic to living cells and can enhance the fluorescence signal from fluorophores residing within the cell by an order of magnitude. In addition, the microplates are smooth and single-crystalline, and ideal as microscopy substrates and molecular electrodes. The growth of the microplates in the initial stages is interesting in that they seem to grow perpendicular to the substrate, as evidenced by in situ microscopy. Open image in new window

Keywords

Au microplates synthesis cell substrate metal enhanced fluorescence manipulation 

Supplementary material

12274_2010_40_MOESM1_ESM.pdf (1.6 mb)
Supplementary material, approximately 1.64 MB.

References

  1. [1]
    Eustis, S.; El-Sayed, M. A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2006, 35, 209–217.CrossRefPubMedGoogle Scholar
  2. [2]
    Tapan, K. S.; Andrey, L. R. Nonspherical noble metal nanoparticles: Colloid-chemical synthesis and morphology control. Adv. Mater. 2010, 22, 1781–1804.CrossRefGoogle Scholar
  3. [3]
    Sajanlal, P. R.; Pradeep, T. Mesoflowers: A new class of highly efficient surface-enhanced Raman active and infrared-absorbing materials. Nano Res. 2009, 2, 306–320.CrossRefGoogle Scholar
  4. [4]
    Shankar, S. S.; Rai, A.; Ankamwar, B.; Singh, A.; Ahmad, A.; Sastry, M. Biological synthesis of triangular gold nanoprisms. Nat. Mater. 2004, 3, 482–488.CrossRefADSPubMedGoogle Scholar
  5. [5]
    Sun, X.; Dong, S.; Wang, E. Large-scale synthesis of micrometer-scale single-crystalline Au plates of nanometer thickness by a wet-chemical route. Angew. Chem. Int. Ed. 2004, 43, 6360–6363.CrossRefGoogle Scholar
  6. [6]
    Shankar, S. S.; Rai, A.; Ahmad, A.; Sastry, M. Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chem. Mater. 2005, 17, 566–572.CrossRefGoogle Scholar
  7. [7]
    Wiley, B. J.; Lipomi, D. J.; Bao, J.; Capasso, F.; Whitesides, G. M. Fabrication of surface plasmon resonators by nanoskiving single-crystalline gold microplates. Nano Lett. 2008, 8, 3023–3028.CrossRefADSPubMedGoogle Scholar
  8. [8]
    Li, W.; Ma, H.; Zhang, J.; Liu, X.; Feng, X. Fabrication of gold nanoprism thin films and their applications in designing high activity electrocatalysts. J. Phys. Chem. C 2009, 113, 1738–1745.CrossRefGoogle Scholar
  9. [9]
    Dahanayaka, D. H.; Wang, J. X.; Hossain, S.; Bumm, L. A. Optically transparent Au{111} substrates: Flat gold nanoparticle platforms for high-resolution scanning tunneling microscopy. J. Am. Chem. Soc. 2006, 128, 6052–6053.CrossRefPubMedGoogle Scholar
  10. [10]
    Sabur, A.; Havel, M.; Gogotsi, Y. SERS intensity optimization by controlling the size and shape of faceted gold nanoparticles. J. Raman Spec. 2008, 39, 61–67.CrossRefADSGoogle Scholar
  11. [11]
    Li, C. C.; Cai, W. P.; Cao, B. Q.; Sun, F. Q.; Li, Y.; Kan, C. X.; Zhang, L. D. Mass synthesis of large, single-crystal Au nanosheets based on a polyol process. Adv. Funct. Mater. 2006, 16, 83–90.MATHCrossRefADSGoogle Scholar
  12. [12]
    Zhu, J.; Shen, Y.; Xie, A.; Qiu, L.; Zhang, Q.; Zhang, S. Photoinduced synthesis of anisotropic gold nanoparticles in room-temperature ionic liquid. J. Phys. Chem. C 2007, 111, 7629–7633.CrossRefGoogle Scholar
  13. [13]
    Li, Z.; Liu, Z.; Zhang, J.; Han, B.; Du, J.; Gao, Y.; Jiang, T. Synthesis of single-crystal gold nanosheets of large size in ionic liquids. J. Phys. Chem. B 2005, 109, 14445–14448.CrossRefPubMedGoogle Scholar
  14. [14]
    Kawasaki, H.; Yonezawa, T.; Nishimura, K.; Arakawa, R. Fabrication of submillimeter-sized gold plates from thermal decomposition of HAuCl4 in two-component ionic liquids. Chem. Lett. 2007, 36, 1038–1039.CrossRefGoogle Scholar
  15. [15]
    Ha, T. H.; Kim, Y. J.; Park, S. H. Complete separation of triangular gold nanoplates through selective precipitation under CTAB micelles in aqueous solution. Chem Comm. 2010, 46, 3164–3166.CrossRefPubMedGoogle Scholar
  16. [16]
    Voigtlander, B.; Linke, U.; Stollwerk, H.; Brona, J. Preparation of bead metal single crystals by electron beam heating. J. Vac. Sci. Tech. 2005, 23, 1535–1537.CrossRefADSGoogle Scholar
  17. [17]
    Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc., Chem. Commun. 1994, 801–802.Google Scholar
  18. [18]
    Yun, Y. J.; Park, G.; Ah, C. S.; Park, H. J.; Yun, W. S.; Ha, D. H. Fabrication of versatile nanocomponents using single-crystalline Au nanoplates. Appl. Phys. Lett. 2005, 87, 233110.CrossRefADSGoogle Scholar
  19. [19]
    Bai, X.; Zheng, L.; Li, N.; Dong, B.; Liu, H. Synthesis and characterization of microscale gold nanoplates using Langmuir monolayers of long-chain ionic liquid. Cryst. Growth Des. 2008, 8, 3840–3846.CrossRefGoogle Scholar
  20. [20]
    Xie, J.; Lee, J. Y.; Wang, D. I. C. Synthesis of single-crystalline gold nanoplates in aqueous solutions through biomineralization by serum albumin protein. J. Phys. Chem. C 2007, 111, 10226–10232.CrossRefGoogle Scholar
  21. [21]
    Yukselici, M. H. Growth kinetics of CdSe nanoparticles in glass. J. Phys.-Condens. Mat. 2002, 14, 1153–1162.CrossRefADSGoogle Scholar
  22. [22]
    Ishihara, H.; Kuribayashi, K.; Takeuchi, S. Arraying single adherent cells by microplate self-assembly. In Micro Electro Mechanical Systems. IEEE 22nd International Conference on MEMS, 25–29 Jan. 2009, pp. 367–370.Google Scholar
  23. [23]
    Onoe, H.; Takeuchi, S. Microfabricated mobile microplates for handling single adherent cells. J. Micromech. Microeng. 2008, 18, 095003.CrossRefADSGoogle Scholar
  24. [24]
    Veiseh, M.; Wickes, B. T.; Castner, D. G.; Zhang, M. Guided cell patterning on gold-silicon dioxide substrates by surface molecular engineering. Biomaterials 2004, 25, 3315–3324.CrossRefPubMedGoogle Scholar
  25. [25]
    Yousaf, M. N.; Houseman, B. T.; Mrksich, M. Using electroactive substrates to pattern the attachment of two different cell populations. Proc. Natl. Acad. Sci. USA 2001, 98, 5992–5996.CrossRefADSPubMedGoogle Scholar
  26. [26]
    Brunetti, V.; Maiorano, G.; Rizzello, L.; Sorce, B.; Sabella, S.; Cingolani, R.; Pompa, P. P. Neurons sense nanoscale roughness with nanometer sensitivity. Proc. Natl. Acad. Sci. USA 2010, 107, 6264–6269.CrossRefADSPubMedGoogle Scholar
  27. [27]
    Moal, E. L.; Fort, E.; Levque-Fort, S.; Cordelières, F. P.; Fontaine-Aupart, M. P.; Ricolleau, C. Enhanced fluorescence cell imaging with metal-coated slides. Biophys. J. 2007, 92, 2150–2161.CrossRefADSPubMedGoogle Scholar
  28. [28]
    Aslan, K.; Gryczynski, I.; Malicka, J.; Matveeva, E.; Lakowicz, J. R.; Geddes, C. D. Metal-enhanced fluorescence: An emerging tool in biotechnology. Curr. Opin. Biotech. 2005, 16, 55–62.CrossRefPubMedGoogle Scholar
  29. [29]
    Zhang, J.; Fu, Y.; Liang, D.; Zhao, R. Y.; Lakowicz, J. R. Enhanced fluorescence images for labeled cells on silver island films. Langmuir 2008, 24, 12452–12457.CrossRefPubMedGoogle Scholar
  30. [30]
    Jia, C. L.; Lentzen, M.; Urban, K. Atomic-resolution imaging of oxygen in perovskite ceramics. Science 2003, 299, 870–873.CrossRefADSPubMedGoogle Scholar
  31. [31]
    Selvi, B. R.; Jagadeesan, D.; Suma, B. S.; Nagashankar, G.; Arif, M.; Balasubramanyam, K.; Eswaramoorthy, M.; Kundu, T. K. Intrinsically fluorescent carbon nanospheres as a nuclear targeting vector: Delivery of membrane-impermeable molecule to modulate gene expression in vivo. Nano Lett. 2008, 8, 3182–3188.CrossRefADSPubMedGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Boya Radha
    • 1
  • Mohammed Arif
    • 2
  • Ranjan Datta
    • 3
  • Tapas K. Kundu
    • 2
  • Giridhar U. Kulkarni
    • 1
  1. 1.Chemistry and Physics of Materials Unit and DST Unit on NanoscienceJawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
  2. 2.Molecular Biology and Genetics UnitJawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
  3. 3.International Centre for Materials ScienceJawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia

Personalised recommendations