Nano Research

, Volume 3, Issue 10, pp 733–737 | Cite as

LiMn2O4 microspheres: Synthesis, characterization and use as a cathode in lithium ion batteries

Open Access
Research Article


Solid and hollow microspheres of LiMn2O4 have been synthesized by lithiating MnCO3 solid microspheres and MnO2 hollow microspheres, respectively. The LiMn2O4 solid microspheres and hollow microspheres had a similar size of about 1.5 ?m, and the shell thickness of the hollow microspheres was only 100 nm. When used as a cathode material in lithium ion batteries, the hollow microspheres exhibited better rate capability than the solid microspheres. However, the tap density of the LiMn2O4 solid microspheres (1.0 g/cm3) was about four times that of the hollow microspheres (0.27 g/cm3). The results show that controlling the particle size of LiMn2O4 is very important in terms of its practical application as a cathode material, and LiMn2O4 with moderate particle size may afford acceptable values of both rate capability and tap density.


Cathode LiMn2O4 microspheres tap density rate capability particle size 


  1. [1]
    Kim, D. K.; Muralidharan, P.; Lee, H. W.; Ruffo, R.; Yang, Y.; Chan, C. K.; Peng, H.; Huggins, R. A.; Cui. Y. Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 2008, 8, 39484–39488.Google Scholar
  2. [2]
    Pasquier, A. D.; Huang, C. C.; Spitler, T. Nano Li4Ti5O12-LiMn2O4 batteries with high power capability and improved cycle-life. J. Power Sources 2009, 186, 508–514.CrossRefGoogle Scholar
  3. [3]
    Ying, J. R.; Jiang, C. Y.; Wan, C. R. Preparation and characterization of high-density spherical LiCoO2 cathode material for lithium ion batteries. J. Power Sources 2004, 129, 264–269.CrossRefGoogle Scholar
  4. [4]
    He, X. M.; Li, J. J.; Cai, Y.; Wang, Y.; Ying, J. R.; Jiang, C. Y.; Wan, C. R. Preparation of co-doped spherical spinel LiMn2O4 cathode materials for Li-ion batteries. J. Power Sources 2005, 150, 216–222.CrossRefGoogle Scholar
  5. [5]
    Liu, Z. L.; Zhang, X. H.; Hong, L. Preparation and electrochemical properties of spherical LiFePO4 and LiFe0.9Mg0.1PO4 cathode materials for lithium rechargeable batteries. J. Appl. Electrochem. 2009, 39, 2433–2438.CrossRefGoogle Scholar
  6. [6]
    Gao, J.; Jiang, C. Y.; Ying, J. R.; Wan, C. R. Preparation and characterization of high-density spherical Li4Ti5O12 anode material for lithium secondary batteries. J. Power Sources 2006, 155, 364–367.Google Scholar
  7. [7]
    Gao, J.; Ying, J. R.; Jiang, C. Y.; Wan, C. R. High-density spherical Li4Ti5O12/C anode material with good rate capability for lithium ion batteries. J. Power Sources 2007, 166, 255–259.CrossRefGoogle Scholar
  8. [8]
    Fei, J. B.; Cui, Y.; Yan, X. H.; Qi, W.; Yang, Y.; Wang, K. W.; He, Q.; Li, J. B. Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment. Adv. Mater. 2008, 20, 452–456.CrossRefGoogle Scholar
  9. [9]
    Cao, J.; Zhu, Y. C.; Bao, K. Y.; Shi, L.; Liu, S. Z.; Qian, Y. T. Microscale Mn2O3 hollow structures: Sphere, cube, ellipsoid, dumbbell, and their phenol adsorption properties. J. Phys. Chem. C 2009, 113, 17755–17760.CrossRefGoogle Scholar
  10. [10]
    Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; von Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.CrossRefADSPubMedGoogle Scholar
  11. [11]
    Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.CrossRefADSPubMedGoogle Scholar
  12. [12]
    Guo, X. W.; Lu, X.; Fang, X. P.; Mao, Y.; Wang, Z. X.; Chen, L. Q.; Xu, X. X.; Yang, H.; Liu, Y. N. Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries. Electrochem. Commun. 2010, 12, 847–850.CrossRefGoogle Scholar
  13. [13]
    Zaghib, K.; Goodenough, J. B.; Mauger, A.; Julien, C. Unsupported claims of ultrafast charging of LiFePO4 Li-ion batteries. J. Power Sources 2009, 194, 1021–1023.CrossRefGoogle Scholar
  14. [14]
    Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878–2887.CrossRefGoogle Scholar
  15. [15]
    Wu, X. L.; Liu, Q.; Guo, Y. G.; Song, W. G. Superior storage performance of carbon nanosprings as anode materials for lithium-ion batteries. Electrochem. Commun. 2009, 11, 1468–1471.CrossRefGoogle Scholar
  16. [16]
    Ma, H.; Zhang, S. Y.; Ji, W. Q.; Tao, Z. L.; Chen, J. ?-CuV2O6 nanowires: Hydrothermal synthesis and primary lithium battery application. J. Amer. Chem. Soc. 2008, 130, 5361–5367.CrossRefGoogle Scholar
  17. [17]
    Xiao, X. L.; Wang, L.; Wang, D. S.; He, X. M.; Peng, Q.; Li, Y. D. Hydrothermal synthesis of orthorhombic LiMnO2 nanoparticles and LiMnO2 nanorods and comparison of their electrochemical performances. Nano Res. 2009, 2, 923–930.CrossRefGoogle Scholar
  18. [18]
    Chou, S. L.; Wang, J. Z.; Choucair, M.; Liu, H. K.; Stride, J. A.; Dou, S. X. Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem. Commun. 2010, 12, 303–306.CrossRefGoogle Scholar
  19. [19]
    Wang, D. S.; Ma, X. L.; Yang, Y. G.; Wang, L.; Wang, Z. Y.; Zheng, W.; He, X. M.; Li, J.; Peng, Q. Li, Y. D. Shape control of CoO and LiCoO2 nanocrystals. Nano Res. 2010, 3, 1–7.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Chemistry and State Key Laboratory of New Ceramics and Fine ProcessingTsinghua UniversityBeijingChina

Personalised recommendations