Nano Research

, Volume 3, Issue 10, pp 722–732 | Cite as

Highly-sensitive multiplexed in vivo imaging using pegylated upconversion nanoparticles

Open Access
Research Article


Lanthanide-based upconversion nanoparticles (UCNPs) have been widely explored in various fields, including optical imaging, in recent years. Although earlier work has shown that UCNPs with different lanthanide (Ln3+) dopants exhibit various colors, multicolor-especially in vivo multiplexed biomedical imaging-using UCNPs has rarely been reported. In this work, we synthesize a series of UCNPs with different emission colors and functionalize them with an amphiphilic polymer to confer water solubility. Multicolor in vivo upconversion luminescence (UCL) imaging is demonstrated by imaging subcutaneously injected UCNPs and applied in multiplexed in vivo lymph node mapping. We also use UCNPs for multicolor cancer cell labeling and realize in vivo cell tracking by UCL imaging. Moreover, for the first time we compare the in vivo imaging sensitivity of quantum dot (QD)-based fluorescence imaging and UCNP-based UCL imaging side by side, and find the in vivo detection limit of UCNPs to be at least one order of magnitude lower than that of QDs in our current non-optimized imaging system. Our data suggest that, by virtue of their unique optical properties, UCNPs have great potential for use in highly-sensitive multiplexed biomedical imaging. Open image in new window


Upconversion nanoparticles multicolor imaging lymphatic mapping cell tracking sensitive imaging 

Supplementary material

12274_2010_36_MOESM1_ESM.pdf (900 kb)
Supplementary material, approximately 904 KB.


  1. [1]
    Gao, X.; Gao, Y.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004, 22, 969–976.CrossRefPubMedGoogle Scholar
  2. [2]
    Goldman, E. R.; Clapp, A. R.; Anderson, G. P.; Uyeda, H. T.; Mauro, J. M.; Medintz, I. L.; Mattoussi, H. Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal. Chem. 2004, 76, 684–688.CrossRefPubMedGoogle Scholar
  3. [3]
    Liu, Z.; Li, X.; Tabakman, S. M.; Jiang, K.; Fan, S.; Dai, H. Multiplexed multi-color Raman imaging of live cells with isotopically modified single walled carbon nanotubes. J. Am. Chem. Soc. 2008, 130, 13540–13541.CrossRefPubMedGoogle Scholar
  4. [4]
    Liu, Z.; Tabakman, S.; Sherlock, S.; Li, X.; Chen, Z.; Jiang, K.; Fan, S.; Dai, H. Multiplexed five-color molecular imaging of cancer cells and tumor tissues with carbon nanotube Raman tags in the near-infrared. Nano Res. 2010, 3, 222–223.CrossRefGoogle Scholar
  5. [5]
    Han, M.; Gao, X.; Su, J. Z.; Nie, S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 2001, 19, 631–635.CrossRefPubMedGoogle Scholar
  6. [6]
    Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.CrossRefADSPubMedGoogle Scholar
  7. [7]
    Sandrock, T.; Scheife, H.; Heumann, E.; Hube, G. High-power continuous-wave upconversion fiber laser at room temperature. Opt. Lett. 1997, 22, 808–810.CrossRefADSPubMedGoogle Scholar
  8. [8]
    Downing, E.; Hesselink, L.; Ralston, J.; Macfarlane, R. A three-color, solid-state, three-dimensional display. Science 1996, 273, 1185–1189.CrossRefADSGoogle Scholar
  9. [9]
    Kumar, R.; Nyk, M.; Ohulchanskyy, T. Y.; Flask, C. A.; Pras, P. N. Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals. Adv. Funct. Mater. 2009, 19, 853–859.CrossRefGoogle Scholar
  10. [10]
    Wang, L.; Yan, R.; Huo, Z.; Wang, L.; Zeng, J.; Bao, J.; Wang, X.; Peng, Q.; Li, Y. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew. Chem. Int. Ed. 2005, 44, 6054–6057.CrossRefGoogle Scholar
  11. [11]
    Yi, G.; Lu, H.; Zhao, S.; Ge, Y.; Yang, W.; Chen, D.; Guo, L. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible up-conversion phosphors. Nano Lett. 2004, 4, 2191–2196.CrossRefADSGoogle Scholar
  12. [12]
    Mai, H.; Zhang, Y.; Si, R.; Yan, Z.; Sun, L.; You, L.; Yan, C. High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties. J. Am. Chem. Soc. 2006, 128, 6426–6436.CrossRefPubMedGoogle Scholar
  13. [13]
    Wang, L. Y.; Zhang, Y.; Zhu, Y. Y. One-pot synthesis and strong near-infrared upconversion luminescence of poly(acrylic acid)-functionalized YF3:Yb3+/Er3+ nanocrystals. Nano Res. 2010, 3, 317–325.CrossRefGoogle Scholar
  14. [14]
    Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065.CrossRefADSPubMedGoogle Scholar
  15. [15]
    Yu, M. X.; Li, F. Y.; Chen, Z. G.; Hu, H.; Zhan, C.; Yang, H.; Huang, C. H. Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors. Anal. Chem. 2009, 81, 930–935.CrossRefPubMedGoogle Scholar
  16. [16]
    Waynant, R. W.; Ilev, I. K.; Gannot, I. Mid-infrared laser applications in medicine and biology. Philos. Trans. R. Soc. London Ser. A 2001, 359, 635–644.CrossRefADSGoogle Scholar
  17. [17]
    Yi, G. S.; Chow, G. M. Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater. 2006, 16, 2324–2329.CrossRefGoogle Scholar
  18. [18]
    Mai, H.; Zhang, Y.; Sun, L.; Yan, C. Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals. J. Phys. Chem. C 2007, 111, 13721–13729.CrossRefGoogle Scholar
  19. [19]
    Jalil, R. A.; Zhang, Y. Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals. Biomaterials 2008, 29, 4122–4128.CrossRefPubMedGoogle Scholar
  20. [20]
    Nyk, M.; Kumar, R.; Ohulchanskyy, T. Y.; Bergey, E. J.; Prasad, P. N. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett. 2008, 8, 3834–3838.CrossRefADSPubMedGoogle Scholar
  21. [21]
    Xiong, L.; Chen, Z.; Tian, Q.; Cao, T.; Xu, C.; Li, F. High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal. Chem. 2009, 81, 8687–8694.CrossRefPubMedGoogle Scholar
  22. [22]
    Xiong, L. Q.; Chen, Z. G.; Yu, M. X.; Li, F. Y.; Liu, C.; Huang, C. H. Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors. Biomaterials 2009, 30, 5592–5600.CrossRefPubMedGoogle Scholar
  23. [23]
    Wang, F.; Liu, X. G. Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 2008, 130, 5642–5643.CrossRefPubMedGoogle Scholar
  24. [24]
    Yin, A. X.; Zhang, Y. W.; Sun, L. D.; Yan, C. H. Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4: Yb,Tm nanocrystals. Nanoscale 2010, 2, 953–959.CrossRefADSPubMedGoogle Scholar
  25. [25]
    Kobayashi, H.; Kosaka, N.; Ogawa, M.; Morgan, N. Y.; Smith, P. D.; Murray, C. B.; Ye, X.; Collins, J.; Kumar, G. A.; Bell, H.; Choyke, P. L. In vivo multiple color lymphatic imaging using upconverting nanocrystals. J. Mater. Chem. 2009, 19, 6481–6484.CrossRefGoogle Scholar
  26. [26]
    Liu, C.; Wang, H.; Li, X.; Chen, D. Monodisperse, sizetunable and highly efficient ?-NaYF4:Yb,Er(Tm) up-conversion luminescent nanospheres: Controllable synthesis and their surface modifications. J. Mater. Chem. 2009, 19, 3546–3553.CrossRefGoogle Scholar
  27. [27]
    Zhou, M.; Nakatani, E.; Gronenberg, L. S.; Tokimoto, T.; Wirth, M. J.; Hruby, V. J.; Roberts, A.; Lynch, R. M.; Ghosh, I. Peptide-labeled quantum dots for imaging GPCRs in whole cells and as single molecules. Bioconjugate Chem. 2007, 18, 323–332.CrossRefGoogle Scholar
  28. [28]
    von Maltzahn, G.; Park, J. H.; Agrawal, A.; Bandaru, N. K.; Das, S. K.; Sailor, M. J.; Bhatia, S. N. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 2009, 69, 3892–3900.CrossRefGoogle Scholar
  29. [29]
    Moon, H. K.; Lee, S. H.; Choi, H. C. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano 2009, 3, 3707–3713.CrossRefPubMedGoogle Scholar
  30. [30]
    Kobayashi, H.; Hama, Y.; Koyama, Y.; Barrett, T.; Regino, C. A. S.; Urano, Y.; Choyke, P. L. Simultaneous multicolor imaging of five different lymphatic basins using quantum dots. Nano Lett. 2007, 7, 1711–1716.CrossRefADSPubMedGoogle Scholar
  31. [31]
    Yang, S.; Cao, L.; Luo, P. G.; Lu, F.; Wang, X.; Wang, H.; Meziani, M. J.; Liu, Y.; Qi, G.; Sun, Y. Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 2009, 131, 11308–11309.CrossRefPubMedGoogle Scholar
  32. [32]
    Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860.CrossRefGoogle Scholar
  33. [33]
    Pyatenko, Y. A.; Voronkov, A. A. The formula of gagarinite. J. Struct. Chem. 1962, 3, 696–697.CrossRefGoogle Scholar
  34. [34]
    Kobayashi, H.; Koyama, Y.; Barrett, T.; Hama, Y.; Regino, C. A. S.; Shin, I. S.; Jang, B. S.; Le, N.; Paik, C. H.; Choyke, P. L.; Urano, Y. Multimodal nanoprobes for radionuclide and five-color near-infrared optical lymphatic imaging. ACS Nano 2007, 1, 258–264.CrossRefPubMedGoogle Scholar
  35. [35]
    Lo Celso, C.; Fleming, H. E.; Wu, J. W.; Zhao, C. X.; Miake-Lye, S.; Fujisaki, J.; Cote, D.; Rowe, D. W.; Lin, C. P.; Scadden, D. T. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 2009, 457, 92–96.CrossRefADSPubMedGoogle Scholar
  36. [36]
    Schroeder, T. Imaging stem-cell-driven regeneration in mammals. Nature 2008, 453, 345–351.CrossRefADSPubMedGoogle Scholar
  37. [37]
    Li, Z. Q.; Zhang, Y.; Jiang, S. Multicolor core/shell-structured upconversion fluorescent nanoparticles. Adv. Mater. 2008, 20, 4765–4769.CrossRefGoogle Scholar
  38. [38]

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft MaterialsSoochow UniversitySuzhou, JiangsuChina
  2. 2.Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials ScienceCity University of Hong KongHong KongChina

Personalised recommendations