Nano Research

, Volume 3, Issue 10, pp 706–713 | Cite as

Contactless monitoring of the diameter-dependent conductivity of GaAs nanowires

  • Fauzia Jabeen
  • Silvia Rubini
  • Faustino Martelli
  • Alfonso Franciosi
  • Andrei Kolmakov
  • Luca Gregoratti
  • Matteo Amati
  • Alexei Barinov
  • Andrea Goldoni
  • Maya Kiskinova
Open Access
Research Article


Contactless monitoring with photoelectron microspectroscopy of the surface potential along individual nanostructures, created by the X-ray nanoprobe, opens exciting possibilities to examine quantitatively size- and surface-chemistry-effects on the electrical transport of semiconductor nanowires (NWs). Implementing this novel approach-which combines surface chemical microanalysis with conductivity measurements-we explored the dependence of the electrical properties of undoped GaAs NWs on the NW width, temperature and surface chemistry. By following the evolution of the Ga 3d and As 3d core level spectra, we measured the position-dependent surface potential along the GaAs NWs as a function of NW diameter, decreasing from 120 to ?20 nm, and correlated the observed decrease of the conductivity with the monotonic reduction in the NW diameter from 120 to ~20 nm. Exposure of the GaAs NWs to oxygen ambient leads to a decrease in their conductivity by up to a factor of 10, attributed to the significant decrease in the carrier density associated with the formation of an oxide shell. Open image in new window


Semiconductor nanowires charge transport surface oxidation photoelectron X-ray microscopy charging GaAs 


  1. [1]
    Hayden, O.; Agarwal, R.; Lu, W. Semiconductor nanowire devices. Nanotoday 2008, 3, 12–22.Google Scholar
  2. [2]
    Sun, Y.; Rogers, J. A. Inorganic semiconductors for flexible electronics. Adv. Mat. 2007, 19, 1897–1916.CrossRefGoogle Scholar
  3. [3]
    Lu, W.; Lieber, C. M. Semiconductor nanowires. J. Phys. D: Appl. Phys. 2006, 39, R387–R406.CrossRefADSGoogle Scholar
  4. [4]
    Dimitriev, S.; Lilach, Y.; Button, B.; Moskovits, M.; Kolmakov, A. Nanoengineered chemiresistors: The interplay between electron transport and chemisorption properties of morphologically encoded SnO2 nanowires. Nanotechnology 2007, 18, 055707.CrossRefADSGoogle Scholar
  5. [5]
    Zhang, S.; Hemesath, E. R.; Perea, D. E.; Wijaya, E.; Lensch-Falk, J. L.; Lauhon, L. J. Relative influence of surface states and bulk impurities on the electrical properties of Ge nanowires. Nano Lett. 2009, 9, 3268–3274.CrossRefADSPubMedGoogle Scholar
  6. [6]
    Wang, D.; Chang, Y. L.; Wang, Q.; Cao, J.; Farmer, D. B.; Gordon, R. G.; Dai, H. Surface chemistry and electrical properties of germanium nanowires. J. Am. Chem. Soc. 2004, 126, 11602–11611.CrossRefPubMedGoogle Scholar
  7. [7]
    Motayed, A.; Vaudin, M.; Davydov, A. V.; Melngailis, J.; He, M.; Mohammad, S. N. Diameter dependent transport properties of gallium nitride nanowire field effect transistors. Appl. Phys. Lett. 2007, 90, 043104.CrossRefADSGoogle Scholar
  8. [8]
    Ford, A. C.; Ho, L. C.; Chueh, Y. L.; Tseng, Y. C.; Fan, Z.; Guo, J.; Bokor, J.; Javey, A. Diameter-dependent electron mobility of InAs nanowires. Nano Lett. 2009, 9, 360–365.CrossRefADSPubMedGoogle Scholar
  9. [9]
    Khanal, D. R.; Yim, J. W. L.; Walukiewicz, W.; Wu, J. Effects of quantum confinement on the doping limit of semiconductor nanowires. Nano Lett. 2008, 7, 1186–1190.CrossRefADSGoogle Scholar
  10. [10]
    Perea, D. A.; Hernesath, E. R.; Schwalbach, E. J.; Lensch-Falk, J. L.; Voorhees, P. W.; Lauhon, L. J. Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire. Nat. Nanotechnol. 2009, 4, 315–319.CrossRefADSPubMedGoogle Scholar
  11. [11]
    Simpkins, B. S.; Mastro, M. A.; Eddy, C. R.; Pehrsson, P. E. Surface depletion effects in semiconducting nanowires. J. Appl. Phys. 2008, 103, 104313.CrossRefADSGoogle Scholar
  12. [12]
    Dong, A.; Yu, H.; Wang, F.; Buhro, W. E. Colloidal GaAs quantum wires: Solution-liquid-solid synthesis and quantum-confinement studies. J. Am. Chem. Soc. 2008, 130, 5954–5961.CrossRefPubMedGoogle Scholar
  13. [13]
    Pan, H.; Feng, Y. P. Semiconductor nanowires and nanotubes: Effects of size and surface-to-volume ratio. ACS Nano 2008, 2, 2410–2414.CrossRefPubMedGoogle Scholar
  14. [14]
    Calarco, R.; Marso, M.; Richter, T.; Aykanat, A. I.; Meijers, R.; Hart, A. V. D.; Stoica, T.; Lüth, H. Size-dependent photoconductivity in MBE-grown GaN nanowires. Nano Lett. 2005, 5, 981–984.CrossRefADSPubMedGoogle Scholar
  15. [15]
    Schricker, A. D.; Davidson, F. M.; Wiacek, R. J.; Korgel, B. A.; Space charge limited currents and trap concentrations in GaAs nanowires. Nanotechnology 2006, 17, 2681–2688.CrossRefADSGoogle Scholar
  16. [16]
    Elfstrom, N.; Juhasz, R.; Sychogov, I.; Engfeldt, T.; Karlstrom, A. E.; Linnros, J. Surface charge sensitivity of silicon nanowires: Size dependence. Nano Lett. 2007, 7, 2608–2612.CrossRefADSPubMedGoogle Scholar
  17. [17]
    Chen, H. Y.; Chen, R. S.; Chang, F. C.; Chen, L. C.; Chen, K. H.; Yang, Y. J. Size-dependent photoconductivity and dark conductivity of m-axial GaN nanowires with small critical diameter. Appl. Phys. Lett. 2009, 95, 143123.CrossRefADSGoogle Scholar
  18. [18]
    Gu, W.; Choi, H.; Kim, K. Universal approach to accurate resistivity measurement for a single nanowire: Theory and application. Appl. Phys. Lett. 2006, 89, 253102.CrossRefADSGoogle Scholar
  19. [19]
    Yu, P. Y.; Cardona, M. Fundamentals of Semiconductors: Physics and Material Properties; Springer-Verlag: Berlin, 2001; pp 464.Google Scholar
  20. [20]
    Schubert, E.; Razek, N.; Frost, F.; Schindler, A.; Rauschenbach, B. GaAs surface cleaning by low-energy hydrogen ion bombardment at moderate temperatures. J. Appl. Phys. 2005, 97, 023511.CrossRefADSGoogle Scholar
  21. [21]
    Margaritondo, G. Synchrotron light in semiconductor research: Three decades of revolution. J. Phys. IV 2006, 132, 23–29.CrossRefGoogle Scholar
  22. [22]
    Barinov, A.; üstünel, H.; Fabris, S.; Gregoratti, L.; Aballe, L.; Dudin, P.; Baroni, S.; Kiskinova, M. Defect-controlled transport properties of metallic atoms along carbon nanotube surfaces. Phys. Rev. Lett. 2007, 99, 046803CrossRefADSPubMedGoogle Scholar
  23. [23]
    Kolmakov, A.; Potluri, S.; Barinov, A.; Mentes, T. O.; Gregoratti, L.; Niño, M. A.; Locatelli, A.; Kiskinova, M. Spectromicroscopy for addressing the surface and electron transport properties of individual 1-D nanostructures and their networks. ACS Nano 2008, 2, 1993–2000.CrossRefPubMedGoogle Scholar
  24. [24]
    Barinov, A.; Gregoratti, L.; Dudin, P.; La Rosa, S.; Kiskinova, M. Imaging and spectroscopy of multiwalled carbon nanotubes during oxidation: Defects and oxygen bonding. Adv. Mater. 2009, 21, 1916–1920.CrossRefGoogle Scholar
  25. [25]
    Barinov, A.; Dudin, P.; Gregoratti, L.; Locatelli, A.; Mentel, T. O.; Niño, M. A.; Kiskinova, M. Synchrotron-based photoelectron microscopy. Nucl. Instr. Meth. Phys. Res. A 2009, 601, 195–202.CrossRefADSGoogle Scholar
  26. [26]
    Cazaux, J. Mechanisms of charging in electron spectroscopy. J. Electr. Spectr. Rel. Phenom. 1999, 105, 155–185.CrossRefGoogle Scholar
  27. [27]
    Cazaux, J. Secondary electron emission and fundamentals of charging mechanisms in XPS. J. Electr. Spectr. Rel. Phenom. 2010, 178-179, 357–372.CrossRefGoogle Scholar
  28. [28]
    Günther, S.; Kolmakov, A.; Kovac, J.; Kiskinova, M. Artefact formation in scanning photoelectron emission microscopy. Ultramicroscopy 1998, 75, 35–51.CrossRefGoogle Scholar
  29. [29]
    de Groot, F.; Kotani, F. A. Core Level Spectroscopy of Solids (Advances in Condensed Matter Science Vol. 6); Taylor and Francis: New York, 2008; pp 231.Google Scholar
  30. [30]
    Piccin, M.; Bais, G.; Grillo, V.; Jabeen, F.; de Franceschi, S.; Carlino, E.; Lazzarino, M.; Romanato, F.; Businaro, L.; Rubini, S.; Martelli, F.; Franciosi, A. Growth by molecular beam epitaxy and electrical characterization of GaAs nanowires. Physica E 2007, 37, 134–137.CrossRefADSGoogle Scholar
  31. [31]
    Hale, M. J.; Yi, S. I.; Sexton, J. Z.; Kummel, A. C.; Passlack, M. Scanning tunneling microscopy and spectroscopy of gallium oxide deposition and oxidation on GaAs(001)-c(2×8)/(2×4). J. Chem. Phys. 2003, 119, 6719–6728.CrossRefADSGoogle Scholar
  32. [32]
    Palomares, F. J.; Alonso, M.; Jimenez, I.; Avila, J.; Sacedon, J. L.; Soria, F. Electron beam induced reactions of O2/GaAs interface. Surf. Sci. 2001, 482-485, 121–127.CrossRefADSGoogle Scholar
  33. [33]
    Mori, G.; Lazzarino, M.; Ercolani, D.; Sorba, L.; Heun, S.; Locatelli, A. Desorption dynamics of oxide nanostructures fabricated by local anodic oxidation nanolithography. J. Appl. Phys. 2005, 97, 114324.CrossRefADSGoogle Scholar
  34. [34]
    Gonska, H.; Freund, H. J.; Hohlneicher, G. On the importance of photoconduction in ESCA experiments. J. Electr. Spec. Rel. Phenom. 1977, 12, 435–441.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Fauzia Jabeen
    • 1
    • 2
  • Silvia Rubini
    • 2
  • Faustino Martelli
    • 2
  • Alfonso Franciosi
    • 1
    • 2
  • Andrei Kolmakov
    • 3
  • Luca Gregoratti
    • 1
  • Matteo Amati
    • 1
  • Alexei Barinov
    • 1
  • Andrea Goldoni
    • 1
  • Maya Kiskinova
    • 1
  1. 1.Sincrotrone Trieste S. C. P. A., Elettra LaboratoryTriesteItaly
  2. 2.Laboratorio TASC IOM-CNRTriesteItaly
  3. 3.Department of PhysicsSouthern Illinois University CarbondaleCarbondaleUSA

Personalised recommendations